Biological synthesis of Fe 3 O 4 @Ag using Scenedesmus obliquus and evaluation of its effect on the expression of MexA‐B efflux pump genes in ciprofloxacin‐resistant Pseudomonas aeruginosa strains

[1]  A. Salehzadeh,et al.  Green Synthesis of CuFe2O4@Ag Nanocomposite Using the Chlorella vulgaris and Evaluation of its Effect on the Expression of norA Efflux Pump Gene Among Staphylococcus aureus Strains , 2020, Biological Trace Element Research.

[2]  A. Salehzadeh,et al.  Functionalization of ZnO Nanoparticles by Glutamic Acid and Conjugation with Thiosemicarbazide Alters Expression of Efflux Pump Genes in Multiple Drug-Resistant Staphylococcus aureus Strains. , 2019, Microbial drug resistance.

[3]  Z. Moradi-Shoeili,et al.  Fe3O4/Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency. , 2019, IET nanobiotechnology.

[4]  A. Salehzadeh,et al.  Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus , 2019, Folia Microbiologica.

[5]  A. Salehzadeh,et al.  Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes , 2019, Biologia.

[6]  Z. Moradi-Shoeili,et al.  Synthesis, Characterization and Functionalization of ZnO Nanoparticles by Glutamic Acid (Glu) and Conjugation of ZnO@Glu by Thiosemicarbazide and Its Synergistic Activity with Ciprofloxacin Against Multi-drug Resistant Staphylococcus aureus , 2019, Journal of Cluster Science.

[7]  Z. Moradi-Shoeili,et al.  Biosynthesis of Fe3O4@Ag Nanocomposite and Evaluation of Its Performance on Expression of norA and norB Efflux Pump Genes in Ciprofloxacin-Resistant Staphylococcus aureus , 2019, Biological Trace Element Research.

[8]  K. Ghosh,et al.  Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  K. Ahmed,et al.  Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. , 2016, Materials science & engineering. C, Materials for biological applications.

[10]  M. El Jaziri,et al.  Quorum-Sensing Mechanisms and Bacterial Response to Antibiotics in P. aeruginosa , 2016, Current Microbiology.

[11]  K. Ahmed,et al.  Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria , 2015 .

[12]  K. Anitha,et al.  A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance , 2015 .

[13]  S. Patra,et al.  Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity , 2015, Applied Nanoscience.

[14]  G. Thompson,et al.  Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. , 2014, Materials science & engineering. C, Materials for biological applications.

[15]  H. Farzaneh,et al.  QUINOLONE RESISTANCE ASSOCIATED WITH EFLLUX PUMPS MEXAB-OPRM IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA , 2014 .

[16]  M. Dong,et al.  Ag-CuFe2O4 magnetic hollow fibers for recyclable antibacterial materials. , 2013, Journal of materials chemistry. B.

[17]  A. Mojtahedi,et al.  Molecular Detection of Integron Genes and Pattern of Antibiotic Resistance in Pseudomonas Aeruginosa Strains Isolated from Intensive Care Unit, Shahid Beheshti Hospital, North of Iran , 2012, International journal of molecular and cellular medicine.

[18]  K. Narayanan,et al.  Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. , 2011, Advances in colloid and interface science.

[19]  A. Barth,et al.  When the resistance gets clingy: Pseudomonas aeruginosa harboring metallo-β-lactamase gene shows high ability to produce biofilm , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[20]  J. Tarafdar,et al.  Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. , 2011, Nanoscale.

[21]  Ruchi Yadav,et al.  Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[22]  Xiaoyuan Ma,et al.  The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. , 2009, Carbohydrate research.

[23]  Yanpeng Ding,et al.  NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses , 2008, Journal of bacteriology.

[24]  P. Tulkens,et al.  A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. , 2007, The Journal of antimicrobial chemotherapy.

[25]  A. Wong-Beringer,et al.  Use of an Efflux Pump Inhibitor To Determine the Prevalence of Efflux Pump-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[26]  E. Shimizu,et al.  Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. , 2005, FEMS microbiology letters.

[27]  T. Renau,et al.  MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. , 2003, Bioorganic & medicinal chemistry letters.

[28]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[29]  D. Hooper Emerging mechanisms of fluoroquinolone resistance. , 2001, Emerging infectious diseases.

[30]  R. Hancock,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[31]  T. Renau,et al.  Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. , 1999, Journal of medicinal chemistry.