Deep phenotyping unveils hidden traits and genetic relations in subtle mutants

[1]  Mason Klein,et al.  Pan-neuronal imaging in roaming Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[2]  M. Boutros,et al.  Microscopy-Based High-Content Screening , 2015, Cell.

[3]  Wolfgang Huber,et al.  A chemical–genetic interaction map of small molecules using high‐throughput imaging in cancer cells , 2015, Molecular systems biology.

[4]  Lani F. Wu,et al.  The Developmental Rules of Neural Superposition in Drosophila , 2015, Cell.

[5]  J. Bessereau,et al.  C. elegans Punctin Clusters GABAA Receptors via Neuroligin Binding and UNC-40/DCC Recruitment , 2015, Neuron.

[6]  L. Kruglyak,et al.  The role of regulatory variation in complex traits and disease , 2015, Nature Reviews Genetics.

[7]  Randall T Peterson,et al.  15 years of zebrafish chemical screening. , 2015, Current opinion in chemical biology.

[8]  Laura M. Jackson,et al.  Finding Our Way through Phenotypes , 2015, PLoS biology.

[9]  K. Shen,et al.  MTM-6, a Phosphoinositide Phosphatase, is Required to Promote Synapse Formation in Caenorhabditis elegans , 2014, PloS one.

[10]  Dimitris N. Metaxas,et al.  CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion , 2014, PLoS Comput. Biol..

[11]  Michelle R. Arkin,et al.  Screening for noise in gene expression identifies drug synergies , 2014, Science.

[12]  Takamasa Kudo,et al.  Controlling low rates of cell differentiation through noise and ultrahigh feedback , 2014, Science.

[13]  C. Granier,et al.  Phenotyping and beyond: modelling the relationships between traits. , 2014, Current opinion in plant biology.

[14]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[15]  Z. Bao,et al.  De Novo Inference of Systems-Level Mechanistic Models of Development from Live-Imaging-Based Phenotype Analysis , 2014, Cell.

[16]  Sangsub Jung,et al.  QuantWorm: A Comprehensive Software Package for Caenorhabditis elegans Phenotypic Assays , 2014, PloS one.

[17]  A. Oudenaarden,et al.  Feedback Control of Gene Expression Variability in the Caenorhabditis elegans Wnt Pathway , 2013, Cell.

[18]  Hang Lu,et al.  Microfluidics as a tool for C. elegans research. , 2013, WormBook : the online review of C. elegans biology.

[19]  K. Shen,et al.  The Balance between Capture and Dissociation of Presynaptic Proteins Controls the Spatial Distribution of Synapses , 2013, Neuron.

[20]  Stephen T. C. Wong,et al.  A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions between Discrete Cell Shapes , 2013, Nature Cell Biology.

[21]  Bo Xian,et al.  WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis , 2013, Aging cell.

[22]  Walter Fontana,et al.  The Caenorhabditis elegans Lifespan Machine , 2013, Nature Methods.

[23]  Paul R Zurek,et al.  3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture , 2013, Proceedings of the National Academy of Sciences.

[24]  Matthew M. Crane,et al.  Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[25]  Michael E. Greenberg,et al.  Activity-dependent neuronal signalling and autism spectrum disorder , 2013, Nature.

[26]  James M. Rehg,et al.  Autonomous screening implicates new genes in synaptogenesis of C. elegans , 2012, Nature Methods.

[27]  Satwik Rajaram,et al.  PhenoRipper: software for rapidly profiling microscopy images , 2012, Nature Methods.

[28]  Polina Golland,et al.  An image analysis toolbox for high-throughput C. elegans assays , 2012, Nature Methods.

[29]  M. Tester,et al.  Phenomics--technologies to relieve the phenotyping bottleneck. , 2011, Trends in plant science.

[30]  Gaudenz Danuser,et al.  Computer Vision in Cell Biology , 2011, Cell.

[31]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[32]  Shigeki Watanabe,et al.  CYY-1/Cyclin Y and CDK-5 Differentially Regulate Synapse Elimination and Formation for Rewiring Neural Circuits , 2011, Neuron.

[33]  F. Piano,et al.  A High-Resolution C. elegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue , 2011, Cell.

[34]  S. Omholt,et al.  Phenomics: the next challenge , 2010, Nature Reviews Genetics.

[35]  William A Fera The next IT challenge. , 2010, Journal of AHIMA.

[36]  Emily K. Lehrman,et al.  An Arf-like Small G Protein, ARL-8, Promotes the Axonal Transport of Presynaptic Cargoes by Suppressing Vesicle Aggregation , 2010, Neuron.

[37]  Y. Goshima,et al.  Genes Required for Cellular UNC-6/Netrin Localization in Caenorhabditis elegans , 2010, Genetics.

[38]  Emily K. Lehrman,et al.  Two Cyclin-Dependent Kinase Pathways Are Essential for Polarized Trafficking of Presynaptic Components , 2010, Cell.

[39]  Y. Kalaidzidis,et al.  Systems survey of endocytosis by multiparametric image analysis , 2010, Nature.

[40]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[41]  Polina Golland,et al.  Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning , 2009, Proceedings of the National Academy of Sciences.

[42]  Kwanghun Chung,et al.  Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system. , 2009, Lab on a chip.

[43]  J. Kaplan,et al.  Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan , 2008, PLoS genetics.

[44]  K. Shen,et al.  UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites , 2008, Nature.

[45]  Lucas Pelkmans,et al.  Lessons from genetics: interpreting complex phenotypes in RNAi screens. , 2008, Current opinion in cell biology.

[46]  Thomas J. Nicholas,et al.  Automated analysis of embryonic gene expression with cellular resolution in C. elegans , 2008, Nature Methods.

[47]  Matthew M. Crane,et al.  Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans , 2008, Nature Methods.

[48]  K. Shen,et al.  Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode C. elegans , 2008, Current Opinion in Neurobiology.

[49]  Randy D Blakely,et al.  Vigorous Motor Activity in Caenorhabditis elegans Requires Efficient Clearance of Dopamine Mediated by Synaptic Localization of the Dopamine Transporter DAT-1 , 2007, The Journal of Neuroscience.

[50]  K. Shen,et al.  Wnt Signaling Positions Neuromuscular Connectivity by Inhibiting Synapse Formation in C. elegans , 2007, Cell.

[51]  C. Bakal,et al.  Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology , 2007, Science.

[52]  Lani F. Wu,et al.  Image-based multivariate profiling of drug responses from single cells , 2007, Nature Methods.

[53]  Maulik R. Patel,et al.  Hierarchical assembly of presynaptic components in defined C. elegans synapses , 2006, Nature Neuroscience.

[54]  M. Nonet,et al.  SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS , 2006, Nature Neuroscience.

[55]  Timothy R Mahoney,et al.  Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay , 2006, Nature Protocols.

[56]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[57]  R. Waterston,et al.  Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[59]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[60]  Lani F. Wu,et al.  Multidimensional Drug Profiling By Automated Microscopy , 2004, Science.

[61]  Cori Bargmann,et al.  Mechanosensory Neurite Termination and Tiling Depend on SAX-2 and the SAX-1 Kinase , 2004, Neuron.

[62]  Erik M. Jorgensen,et al.  The art and design of genetic screens: Caenorhabditis elegans , 2002, Nature Reviews Genetics.

[63]  M. Zhen,et al.  The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans , 1999, Nature.

[64]  K. Matsumoto,et al.  A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type‐D GABAergic motor neurons , 1999, The EMBO journal.

[65]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[67]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[68]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[70]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[71]  Cori Bargmann,et al.  The SAD-1 Kinase Regulates Presynaptic Vesicle Clustering and Axon Termination , 2001, Neuron.

[72]  W. Wood The Nematode Caenorhabditis elegans , 1988 .