Structured Matrix Based Methods for Approximate Polynomial GCD

i. Introduction.- ii. Notation.- 1. Approximate polynomial GCD.- 2. Structured and resultant matrices.- 3. The Euclidean algorithm.- 4. Matrix factorization and approximate GCDs.- 5. Optimization approach.- 6. New factorization-based methods.- 7. A fast GCD algorithm.- 8. Numerical tests.- 9. Generalizations and further work.- 10. Appendix A: Distances and norms.- 11. Appendix B: Special matrices.- 12. Bibliography.- 13. Index.

[1]  C. Bischof Incremental condition estimation , 1990 .

[2]  N. Karcanias,et al.  A matrix pencil based numerical method for the computation of the GCD of polynomials , 1994, IEEE Trans. Autom. Control..

[3]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[4]  G. Heinig Matrix representations of Bezoutians , 1995 .

[5]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[6]  Philippe Langlois,et al.  Testing polynomial primality with pseudozeros , 2003 .

[7]  I. Emiris,et al.  Certified approximate univariate GCDs , 1997 .

[8]  Laureano González-Vega,et al.  Barnett's Theorems About the Greatest Common Divisor of Several Univariate Polynomials Through Bezout-like Matrices , 2002, J. Symb. Comput..

[9]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[10]  Zhenghong Yang,et al.  Polynomial Bezoutian matrix with respect to a general basis , 2001 .

[11]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[12]  Siegfried M. Rump,et al.  Structured Perturbations Part I: Normwise Distances , 2003, SIAM J. Matrix Anal. Appl..

[13]  J. B. Rosen,et al.  Low Rank Approximation of a Hankel Matrix by Structured Total Least Norm , 1999 .

[14]  Dario Bini,et al.  Structured matrix-based methods for polynomial ∈-gcd: analysis and comparisons , 2007, ISSAC '07.

[15]  Arnold Schönhage,et al.  Quasi-GCD computations , 1985, J. Complex..

[16]  Robert M. Corless,et al.  Optimization strategies for the approximate GCD problem , 1998, ISSAC '98.

[17]  Sabine Van Huffel,et al.  On the computation of the multivariate structured total least squares estimator , 2004, Numer. Linear Algebra Appl..

[18]  Ben Liang,et al.  Blind image deconvolution using a robust GCD approach , 1999, IEEE Trans. Image Process..

[19]  Narendra Karmarkar,et al.  On Approximate GCDs of Univariate Polynomials , 1998, J. Symb. Comput..

[20]  Thomas W. Sederberg,et al.  Best linear common divisors for approximate degree reduction , 1993, Comput. Aided Des..

[21]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[22]  S. Cabay,et al.  A weakly stable algorithm for Pade´ approximants and the inversion of Hankel matrices , 1993 .

[23]  Martin Vetterli,et al.  Iterative Toeplitz solvers with local quadratic convergence , 1993, Computing.

[24]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[25]  Richard P. Brent,et al.  Stability of fast algorithms for structured linear systems , 1999, ArXiv.

[26]  Hans J. Stetter,et al.  Detection and Validation of Clusters of Polynomial Zeros , 1997, J. Symb. Comput..

[27]  L. B. Rall Convergence of the newton process to multiple solutions , 1966 .

[28]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[29]  Sabine Van Huffel,et al.  Block-Toeplitz/Hankel Structured Total Least Squares , 2005, SIAM J. Matrix Anal. Appl..

[30]  George Labahn,et al.  When are Two Numerical Polynomials Relatively Prime? , 1998, J. Symb. Comput..

[31]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[32]  P. Wedin,et al.  Regularization Methods for Uniformly Rank-Deficient Nonlinear Least-Squares Problems , 2005 .

[33]  Zhonggang Zeng Computing multiple roots of inexact polynomials , 2005, Math. Comput..

[34]  Christopher J. Zarowski The MDL criterion for rank determination via effective singular values , 1998, IEEE Trans. Signal Process..

[35]  Marilena Mitrouli,et al.  Approximate greatest common divisor of many polynomials, generalised resultants, and strength of approximation , 2006, Comput. Math. Appl..

[36]  Richard P. Brent,et al.  Error analysis of a fast partial pivoting method for structured matrices , 1995, Optics & Photonics.

[37]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.

[38]  Tateaki Sasaki,et al.  Polynomial remainder sequence and approximate GCD , 1997, SIGS.

[39]  S. Barnett,et al.  Greatest common divisor of several polynomials , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[41]  Dario Bini,et al.  Fast fraction-free triangularization of Bezoutians with applications to sub-resultant chain computation , 1997 .

[42]  Giuseppe Rodriguez,et al.  Fast Solution of Toeplitz- and Cauchy-Like Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..

[43]  R. Fletcher,et al.  Generalized Inverse Methods for the Best Least Squares Solution of Systems of Non-Linear Equations , 1968, Comput. J..

[44]  T. Kailath,et al.  Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .

[45]  V. Pan On computations with dense structured matrices , 1990 .

[46]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[47]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[48]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[49]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[50]  Sabine Van Huffel,et al.  An algorithm for approximate common divisor computation , 2006 .

[51]  Petre Stoica,et al.  Common factor detection and estimation , 1997, Autom..

[52]  Zhonggang Zeng,et al.  A Rank-Revealing Method with Updating, Downdating, and Applications , 2005, SIAM J. Matrix Anal. Appl..

[53]  Elliot L. Linzer Can Symmetric Toeplitz Solvers be Strongly Stable? , 1992, ISTCS.

[54]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[55]  Albrecht Böttcher,et al.  Structured condition numbers of large Toeplitz matrices are rarely better than usual condition numbers , 2005, Numer. Linear Algebra Appl..

[56]  J. Verschelde,et al.  Computing dynamic output feedback laws with pieri homotopies on a parallel computer , 2005 .

[57]  Robert M. Corless Editor's Corner: Cofactor Iteration , 1996 .

[58]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[59]  E. Kaltofen,et al.  Structured Low Rank Approximation of a Sylvester Matrix , 2007 .

[60]  Victor Y. Pan,et al.  Improved processor bounds for combinatorial problems in RNC , 1988, Comb..

[61]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[62]  George Labahn,et al.  A Fast and Numerically Stable Euclidean-Like Algorithm for Detecting Relatively Prime Numerical Polynomials , 1998, J. Symb. Comput..

[63]  Laureano Gonzalez-Vega,et al.  Computing greatest common divisors and squarefree decompositions through matrix methods: The parametric and approximate cases , 2006 .

[64]  Georg Heinig,et al.  Fast inversion algorithms of Toeplitz-plus-Hankel matrices , 1988 .

[65]  M. Noda,et al.  APPROXIMATE GCD OF MULTIVARIATE POLYNOMIALS , 2000 .

[66]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[67]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[68]  S. Barnett,et al.  A Note on the Bezoutian Matrix , 1972 .

[69]  Joab R. Winkler A companion matrix resultant for Bernstein polynomials , 2003 .

[70]  Thomas Kailath,et al.  Displacement ranks of a matrix , 1979 .

[71]  Xiaoyan Ma,et al.  QR-factorization method for computing the greatest common divisor of polynomials with inexact coefficients , 2000, IEEE Trans. Signal Process..

[72]  Stephen M. Watt,et al.  QR factoring to compute the GCD of univariate approximate polynomials , 2004, IEEE Transactions on Signal Processing.

[73]  Ronald G Mosier Root neighborhoods of a polynomial , 1986 .

[74]  George Labahn,et al.  On computing polynomial GCDs in alternate bases , 2006, ISSAC '06.

[75]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[76]  V. Pan Numerical Computation of a Polynomial GCD and Extensions , 1996 .

[77]  T. Kailath,et al.  Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .

[78]  Victor Y. Pan,et al.  Approximate polynomial Gcds, Padé approximation, polynomial zeros and bipartite graphs , 1998, SODA '98.

[79]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[80]  David Rupprecht An algorithm for computing certified approximate GCD of n univariate polynomials , 1999 .

[81]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[82]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[83]  M. Laidacker Another Theorem Relating Sylvester's Matrix and the Greatest Common Divisor , 1969 .

[84]  Dario Bini,et al.  Bernstein-Bezoutian matrices , 2004, Theor. Comput. Sci..

[85]  Joab R. Winkler,et al.  Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis , 2005, Numer. Linear Algebra Appl..

[86]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[87]  Marc Van Barel,et al.  Fast QR factorization of Cauchy-like matrices , 2008 .

[88]  R. E. Cline,et al.  Generalized inverses of certain Toeplitz matrices , 1974 .

[89]  R. Vandebril,et al.  Semiseparable Matrices and the Symmetric Eigenvalue Problem , 2008 .

[90]  Narendra Karmarkar,et al.  Approximate polynomial greatest common divisors and nearest singular polynomials , 1996, ISSAC '96.

[91]  Erich Kaltofen,et al.  Approximate factorization of multivariate polynomials via differential equations , 2004, ISSAC '04.

[92]  Enrico Bombieri,et al.  Products of polynomials in many variables , 1990 .

[93]  Ali H. Sayed,et al.  Fast algorithms for generalized displacement structures , 1991 .

[94]  Dario Bini,et al.  Fast Parallel Computation of the Polynomial Remainder Sequence Via Bezout and Hankel Matrices , 1995, SIAM J. Comput..