Multi-microprocessor-based cartesian-space control techniques for a mechanical manipulator

This paper presents a multimicroprocessor-based structure for controlling the manipulator motion in Cartesian space. The objective is to investigate the feasibility of implementing hand-based control laws using present day microprocessors. Computational complexity analysis indicates that the control schemes involving full inverse-kinematics and inverse-dynamics computations can be realized using the proposed control structure.

[1]  Hironori Kasahara,et al.  Parallel processing of robot-arm control computation on a multimicroprocessor system , 1985, IEEE J. Robotics Autom..

[2]  C.s.g. Lee,et al.  An adaptive control strategy for mechanical manipulators , 1984 .

[3]  In Ha,et al.  An approach to nonlinear feedback control with applications to robotics , 1984, The 22nd IEEE Conference on Decision and Control.

[4]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  David E. Orin,et al.  Pipeline/Parallel algorithms for the jacobian and inverse dynamics computations , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[6]  Steven Dubowsky,et al.  The application of model-referenced adaptive control to robotic manipulators , 1979 .

[7]  Richard H. Lathrop,et al.  Parallelism in Manipulator Dynamics , 1985 .

[8]  D. T. Horak,et al.  A Simplified Modeling and Computational Scheme for Manipulator Dynamics , 1984 .

[9]  J. Hollerbach,et al.  Wrist-Partitioned, Inverse Kinematic Accelerations and Manipulator Dynamics , 1983 .

[10]  G. Zorpette,et al.  The beauty of 32 bits: This near-optimum bit width has unprecedented potential for the well-informed designer of microprocessor-based systems , 1985, IEEE Spectrum.

[11]  C. S. George Lee,et al.  A multiprocessor-based controller for the control of mechanical manipulators , 1985, IEEE J. Robotics Autom..

[12]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[13]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[14]  Takeo Kanade,et al.  Real-time control of CMU direct-drive arm II using customized inverse dynamics , 1984, The 23rd IEEE Conference on Decision and Control.

[15]  Roy Featherstone,et al.  Position and Velocity Transformations Between Robot End-Effector Coordinates and Joint Angles , 1983 .

[16]  B. H. Lee,et al.  Resolved Motion Adaptive Control for Mechanical Manipulators , 1984, 1984 American Control Conference.

[17]  A. Bejczy Robot arm dynamics and control , 1974 .

[18]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[19]  Pradeep K. Khosla,et al.  Computational requirements of customized Newton-Euler algorithms , 1985, J. Field Robotics.

[20]  D. E. Whitney,et al.  The mathematics of coordinated control of prosthetic arms and manipulators. , 1972 .

[21]  Ten-Huei Guo,et al.  Adaptive linear controller for robotic manipulators , 1983 .

[22]  Chang-Huan Liu,et al.  A Comparison of Controller Design and Simulation for an Industrial Manipulator , 1986, IEEE Transactions on Industrial Electronics.

[23]  J. Y. S. LUH,et al.  Scheduling of Parallel Computation for a Computer-Controlled Mechanical Manipulator , 1982, IEEE Transactions on Systems, Man, and Cybernetics.