Infrared microscopy studies on high-power InGaAs-GaAs-InGaP lasers with Ga/sub 2/O/sub 3/ facet coatings
暂无分享,去创建一个
Niloy K. Dutta | W. S. Hobson | John Lopata | M. Passlack | D. T. Nichols | Clyde G. Bethea | E. F. Schubert | George John Zydzik | N. Dutta | C. Bethea | G. Zydzik | M. Passlack | J. Lopata | E. Schubert | E. Schubert | U. Chakrabarti | D. Nichols | J. D. Jong | J. F. de Jong | Utpal Kumar Chakrabarti | W. Hobson
[1] W. Joyce,et al. Thermal resistance of heterostructure lasers , 1975 .
[2] G. Erbert,et al. Catastrophic optical damage in GaAlAs/GaAs laser diodes , 1987 .
[3] P. Petroff,et al. Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .
[4] G. P. Schwartz,et al. Analysis of native oxide films and oxide-substrate reactions on III–V semiconductors using thermochemical phase diagrams , 1983 .
[5] Influence of local heating on current‐optical output power characteristics in Ga1−xAlxAs lasers , 1986 .
[6] S. Adachi. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .
[7] J. C. Jaeger,et al. Conduction of Heat in Solids , 1952 .
[8] David J. Webb,et al. Comparison of the facet heating behavior between AlGaAs single quantum‐well lasers and double‐heterojunction lasers , 1992 .
[9] Takeshi Kobayashi,et al. Temperature Distributions in the GaAs-AlGaAs Double-Heterostructure Laser below and above the Threshold Current , 1975 .
[10] Richard Schatz,et al. Steady state model for facet heating leading to thermal runaway in semiconductor lasers , 1994 .
[11] W. S. Hobson,et al. Ga2O3 films for electronic and optoelectronic applications , 1995 .
[12] P. Buchmann,et al. Lattice disorder, facet heating and catastrophic optical mirror damage of AlGaAs quantum well lasers , 1993 .
[13] T. Miyazaki,et al. 0.98-1.02 mu m strained InGaAs/AlGaAs double quantum-well high-power lasers with GaInP buried waveguides , 1993 .
[14] M. Kondow,et al. Dependence of photoluminescence peak energy of MOVPE-grown AlGaInP on substrate orientation , 1989 .
[15] Charles Howard Henry,et al. The effect of surface recombination on current in AlxGa1−xAs heterojunctions , 1978 .
[16] P. Zory,et al. Temperature rise at mirror facet of CW semiconductor lasers , 1992 .
[17] M. Fukuda,et al. Facet degradation and passivation of InGaAsP/InP lasers , 1982 .
[18] M. Pessa,et al. High-power operation of aluminum-free ( kappa =0.98 mu m) pump laser for erbium-doped fiber amplifier , 1993, IEEE Photonics Technology Letters.
[19] Henryk Temkin,et al. Optically induced catastrophic degradation in InGaAsP/InP layers , 1982 .
[20] M. Pessa,et al. Optimization and characteristics of Al-free strained-layer InGaAs/GaInAsP/GaInP SCH-QW lasers ( lambda approximately 980 nm) grown by gas-source MBE , 1993 .
[21] Wlodzimierz Nakwaski,et al. Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .
[22] Ming C. Wu,et al. InGaAs/GaAs/InGaP multiple‐quantum‐well lasers prepared by gas‐source molecular beam epitaxy , 1991 .
[23] H. Brugger,et al. Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes , 1990 .
[24] L. Goldberg,et al. Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe , 1992 .
[25] S. Namiki,et al. 0.98 mu m InGaAs-InGaAsP-InGaP GRIN-SCH SL-SQW lasers for coupling high optical power into single-mode fiber , 1993 .
[26] C. Henry,et al. Catastrophic damage of AlxGa1−xAs double‐heterostructure laser material , 1979 .
[27] M. Pessa,et al. Aluminium-free 980 nm laser diodes , 1993 .
[28] David E. Aspnes,et al. RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .
[29] M. Passlack,et al. IN SITU FABRICATED GA2O3-GAAS STRUCTURES WITH LOW INTERFACE RECOMBINATION VELOCITY , 1995 .
[30] A. Gomyo,et al. Sublattice ordering in GaInP and AlGaInP: Effects of substrate orientations , 1990 .
[31] Peter W. Epperlein,et al. Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers , 1993 .
[32] W. S. Hobson,et al. High quality AlxGa1−xAs grown by organometallic vapor phase epitaxy using trimethylamine alane as the aluminum precursor , 1991 .
[33] S. Groves,et al. Low‐threshold InGaAs strained‐layer quantum‐well lasers (λ=0.98 μm) with GaInP cladding layers and mass‐transported buried heterostructure , 1992 .
[34] M. J. Robertson,et al. The weighted index method: a new technique for analyzing planar optical waveguides , 1989 .
[35] M.C. Wu,et al. High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers , 1992, IEEE Photonics Technology Letters.
[36] H. Okamoto,et al. High power CW operation of aluminium-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers , 1990, 12th IEEE International Conference on Semiconductor Laser.
[37] Edik U. Rafailov,et al. High‐power buried InGaAsP/GaAs (λ=0.8 μm) laser diodes , 1993 .
[38] R. M. Kolbas,et al. Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers , 1988 .