Infrared microscopy studies on high-power InGaAs-GaAs-InGaP lasers with Ga/sub 2/O/sub 3/ facet coatings

InGaAs-GaAs separate confinement, heterostructure single quantum-well (SCH-SQW) lasers (/spl lambda/=0.98 /spl mu/m) with lattice-matched InGaP cladding layers, using a new Ga/sub 2/O/sub 3/ low reflectivity (LR) front-facet coating, are reported. The CW peak power density (17 MW/cm/sup 2/) of 6 /spl mu/m/spl times/750 /spl mu/m ridge-waveguide lasers is limited by thermal rollover, and repeated cycling beyond thermal rollover produced no change in operating characteristics. The high-power temperature distribution along the active stripe has been measured by high-resolution infrared (3-5 /spl mu/m) imaging microscopy. The temperature profile acquired for a very high optical power density P/sub D/=11 MW/cm/sup 3/ was found to be uniform along the inner active laser stripe, and revealed a local temperature increase at the LR front facet /spl Delta/T/sub f/ of only 9 K above the average stripe temperature /spl Delta/T/sub s/=24 K. An excellent front-facet interface recombination velocity >

[1]  W. Joyce,et al.  Thermal resistance of heterostructure lasers , 1975 .

[2]  G. Erbert,et al.  Catastrophic optical damage in GaAlAs/GaAs laser diodes , 1987 .

[3]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[4]  G. P. Schwartz,et al.  Analysis of native oxide films and oxide-substrate reactions on III–V semiconductors using thermochemical phase diagrams , 1983 .

[5]  Influence of local heating on current‐optical output power characteristics in Ga1−xAlxAs lasers , 1986 .

[6]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[7]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[8]  David J. Webb,et al.  Comparison of the facet heating behavior between AlGaAs single quantum‐well lasers and double‐heterojunction lasers , 1992 .

[9]  Takeshi Kobayashi,et al.  Temperature Distributions in the GaAs-AlGaAs Double-Heterostructure Laser below and above the Threshold Current , 1975 .

[10]  Richard Schatz,et al.  Steady state model for facet heating leading to thermal runaway in semiconductor lasers , 1994 .

[11]  W. S. Hobson,et al.  Ga2O3 films for electronic and optoelectronic applications , 1995 .

[12]  P. Buchmann,et al.  Lattice disorder, facet heating and catastrophic optical mirror damage of AlGaAs quantum well lasers , 1993 .

[13]  T. Miyazaki,et al.  0.98-1.02 mu m strained InGaAs/AlGaAs double quantum-well high-power lasers with GaInP buried waveguides , 1993 .

[14]  M. Kondow,et al.  Dependence of photoluminescence peak energy of MOVPE-grown AlGaInP on substrate orientation , 1989 .

[15]  Charles Howard Henry,et al.  The effect of surface recombination on current in AlxGa1−xAs heterojunctions , 1978 .

[16]  P. Zory,et al.  Temperature rise at mirror facet of CW semiconductor lasers , 1992 .

[17]  M. Fukuda,et al.  Facet degradation and passivation of InGaAsP/InP lasers , 1982 .

[18]  M. Pessa,et al.  High-power operation of aluminum-free ( kappa =0.98 mu m) pump laser for erbium-doped fiber amplifier , 1993, IEEE Photonics Technology Letters.

[19]  Henryk Temkin,et al.  Optically induced catastrophic degradation in InGaAsP/InP layers , 1982 .

[20]  M. Pessa,et al.  Optimization and characteristics of Al-free strained-layer InGaAs/GaInAsP/GaInP SCH-QW lasers ( lambda approximately 980 nm) grown by gas-source MBE , 1993 .

[21]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[22]  Ming C. Wu,et al.  InGaAs/GaAs/InGaP multiple‐quantum‐well lasers prepared by gas‐source molecular beam epitaxy , 1991 .

[23]  H. Brugger,et al.  Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes , 1990 .

[24]  L. Goldberg,et al.  Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe , 1992 .

[25]  S. Namiki,et al.  0.98 mu m InGaAs-InGaAsP-InGaP GRIN-SCH SL-SQW lasers for coupling high optical power into single-mode fiber , 1993 .

[26]  C. Henry,et al.  Catastrophic damage of AlxGa1−xAs double‐heterostructure laser material , 1979 .

[27]  M. Pessa,et al.  Aluminium-free 980 nm laser diodes , 1993 .

[28]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[29]  M. Passlack,et al.  IN SITU FABRICATED GA2O3-GAAS STRUCTURES WITH LOW INTERFACE RECOMBINATION VELOCITY , 1995 .

[30]  A. Gomyo,et al.  Sublattice ordering in GaInP and AlGaInP: Effects of substrate orientations , 1990 .

[31]  Peter W. Epperlein,et al.  Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers , 1993 .

[32]  W. S. Hobson,et al.  High quality AlxGa1−xAs grown by organometallic vapor phase epitaxy using trimethylamine alane as the aluminum precursor , 1991 .

[33]  S. Groves,et al.  Low‐threshold InGaAs strained‐layer quantum‐well lasers (λ=0.98 μm) with GaInP cladding layers and mass‐transported buried heterostructure , 1992 .

[34]  M. J. Robertson,et al.  The weighted index method: a new technique for analyzing planar optical waveguides , 1989 .

[35]  M.C. Wu,et al.  High temperature, high power InGaAs/GaAs quantum-well lasers with lattice-matched InGaP cladding layers , 1992, IEEE Photonics Technology Letters.

[36]  H. Okamoto,et al.  High power CW operation of aluminium-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers , 1990, 12th IEEE International Conference on Semiconductor Laser.

[37]  Edik U. Rafailov,et al.  High‐power buried InGaAsP/GaAs (λ=0.8 μm) laser diodes , 1993 .

[38]  R. M. Kolbas,et al.  Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers , 1988 .