Dictionary-based probability density function estimation for high-resolution SAR data

In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for the statistics of pixel intensities in high resolution synthetic aperture radar (SAR) images. This method is an extension of previously existing method for lower resolution images. The method integrates the stochastic expectation maximization (SEM) scheme and the method of log-cumulants (MoLC) with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). The proposed dictionary consists of eight state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The designed scheme is endowed with the novel initialization procedure and the algorithm to automatically estimate the optimal number of mixture components. The experimental results with a set of several high resolution COSMO-SkyMed images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive accuracy measures such as correlation coefficient (above 99,5%). The method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous scenes.

[1]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[2]  Wen Hong,et al.  Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images , 2007, 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar.

[3]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[4]  Y. Chan,et al.  An Introduction to Synthetic Aperture Radar (SAR) , 2008 .

[5]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[6]  Gabriele Moser,et al.  SAR amplitude probability density function estimation based on a generalized Gaussian model , 2006, IEEE Transactions on Image Processing.

[7]  Josiane Zerubia,et al.  Modeling SAR images with a generalization of the Rayleigh distribution , 2004, IEEE Transactions on Image Processing.

[8]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[9]  Gilles Celeux,et al.  On Stochastic Versions of the EM Algorithm , 1995 .

[10]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[11]  Wojciech Pieczynski,et al.  SEM algorithm and unsupervised statistical segmentation of satellite images , 1993, IEEE Trans. Geosci. Remote. Sens..

[12]  Wojciech Pieczynski,et al.  Modeling non-Rayleigh speckle distribution in SAR images , 2002, IEEE Trans. Geosci. Remote. Sens..

[13]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  I. N. Sneddon The use of integral transforms , 1972 .

[15]  Jean-Marie Nicolas,et al.  Accuracy of fisher distributions and log-moment estimation to describe amplitude distributions of high resolution SAR images over urban areas , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[16]  Nakagami Law,et al.  GAMMA MIXTURE MODELED WITH "SECOND KIND STATISTICS" : APPLICATION TO SAR IMAGE PROCESSING , 2002 .

[17]  Larry L. Schumaker,et al.  Approximation theory X : wavelets, splines, and applications , 2002 .

[18]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[19]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[20]  Gabriele Moser,et al.  Modeling the Statistics of High Resolution Sar Images Modeling the Statistics of High Resolution Sar Images Modélisation Des Statistiques Des Images Radar (rso) Haute Résolution , 2022 .

[21]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  David G. Stork,et al.  Pattern Classification , 1973 .

[23]  Maria Petrou,et al.  Modelling the histograms of various classes in SAR images , 2002, Pattern Recognit. Lett..

[24]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[25]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[26]  Gabriele Moser,et al.  Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[28]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[29]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[30]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[32]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[33]  G. Celeux,et al.  Strategies for Getting the Highest Likelihood in Mixture Models , 2001 .