Linear and Nonlinear Effects of Proton Temperature Anisotropy on Proton-beam Instability in the Solar Wind

Solar wind observations have shown that the drift velocity of the proton beam relative to the background proton is of the order of the local Alfvén velocity. The proton-beam instability has been suggested to play an important role in decelerating proton beams. Most existing studies examined the kinetic properties of the proton-beam instability in simple Maxwellian or drift-Maxwellian plasmas. In this paper, we systemically investigate the effects of the proton temperature anisotropy on the growth rates of proton-beam instabilities using linear Vlasov equations and the nonlinear evolution of these instabilities at different propagation angles using 1D and 2D hybrid simulations. The results show that the real frequencies, growth rates, and threshold conditions strongly depend on the proton temperature anisotropy Ti⊥/Ti∣∣ and the parallel proton beta βi∣∣ . The parallel magnetosonic/whistler (M/W), backward M/W, and oblique Alfvén/ion-cyclotron (A/IC) instabilities are likely to grow in the regime of Ti⊥/Ti∣∣<1 , whereas the parallel M/W, oblique A/IC, parallel A/IC, and mirror instabilities tend to be excited in the regime of Ti⊥/Ti∣∣>1 . Moreover, the oblique A/IC instability with a linear wave growth phase can quickly reduce the proton-beam drift velocity when Ti⊥/Ti∣∣<1 , while the nonlinear wave–particle interaction for the parallel A/IC and mirror instabilities tends to gradually reduce the drift velocity when Ti⊥/Ti∣∣>1 . The linear and nonlinear evolution of the proton-beam instability associated with the proton temperature anisotropy can be used to explain the observed dependence of the proton-beam drift velocity on the plasma beta and temperature anisotropy in the solar wind.

[1]  D. J. Wu,et al.  Effects of Electron Temperature Anisotropy on Proton-beam Instability in the Solar Wind , 2020, The Astrophysical Journal.

[2]  R. Livi,et al.  Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves , 2020, The Astrophysical Journal Supplement Series.

[3]  R. Livi,et al.  Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations , 2019, The Astrophysical Journal Supplement Series.

[4]  Dejin Wu,et al.  On Kinetic Instabilities Driven By Ion Temperature Anisotropy and Differential Flow in the Solar Wind , 2019, The Astrophysical Journal.

[5]  K. Klein,et al.  Solar Wind Temperature Isotropy. , 2019, Physical review letters.

[6]  L. Chen,et al.  Effect of Alpha Beams on Low-frequency Electromagnetic Waves Driven by Proton Beams , 2018, The Astrophysical Journal.

[7]  J. Kasper,et al.  A Comparison of Alpha Particle and Proton Beam Differential Flows in Collisionally Young Solar Wind , 2018, The Astrophysical Journal.

[8]  S. Nagataki,et al.  Neutrinos from Choked Jets Accompanied by Type-II Supernovae , 2018, 1803.07478.

[9]  A. Schekochihin,et al.  MULTI-SPECIES MEASUREMENTS OF THE FIREHOSE AND MIRROR INSTABILITY THRESHOLDS IN THE SOLAR WIND , 2016, 1606.02624.

[10]  J. Kasper,et al.  Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005 , 2015, Journal of geophysical research. Space physics.

[11]  Yong Xiao,et al.  PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma , 2014, 1410.2678.

[12]  P. Hellinger,et al.  SOLAR WIND PROTONS AT 1 AU: TRENDS AND BOUNDS, CONSTRAINTS AND CORRELATIONS , 2014, 1402.4611.

[13]  Q. Lu,et al.  Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations , 2013 .

[14]  Khan‐Hyuk Kim,et al.  Solar-wind proton anisotropy versus beta relation. , 2013, Physical review letters.

[15]  Q. Lu,et al.  ELECTROMAGNETIC PROTON/PROTON INSTABILITY AND ITS IMPLICATIONS FOR ION HEATING IN THE EXTENDED FAST SOLAR WIND , 2013 .

[16]  E. Marsch Helios: Evolution of Distribution Functions 0.3–1 AU , 2012 .

[17]  J. Kasper,et al.  INSTABILITY-DRIVEN LIMITS ON HELIUM TEMPERATURE ANISOTROPY IN THE SOLAR WIND: OBSERVATIONS AND LINEAR VLASOV ANALYSIS , 2012 .

[18]  B. Tsurutani,et al.  Mirror instability and L‐mode electromagnetic ion cyclotron instability: Competition in the Earth's magnetosheath , 2009 .

[19]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[20]  Q. Lu,et al.  Two-dimensional hybrid simulations of the oblique electromagnetic alpha/proton instability in the solar wind , 2009 .

[21]  Petr Hellinger,et al.  Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU , 2007 .

[22]  L. Xia,et al.  Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind , 2006 .

[23]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[24]  E. Marsch,et al.  Dependence of the proton beam drift velocity on the proton core plasma beta in the solar wind , 2004 .

[25]  Yu Lin,et al.  Generation of nonlinear Alfvén and magnetosonic waves by beam–plasma interaction , 2003 .

[26]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[27]  S. Gary,et al.  Electromagnetic proton/proton instabilities in the solar wind: Simulations , 1999 .

[28]  William Daughton,et al.  Electromagnetic proton/proton instabilities in the solar wind , 1998 .

[29]  Rudolf A. Treumann,et al.  Advanced space plasma physics , 1997 .

[30]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[31]  David J. McComas,et al.  Evidence for ion jets in the high‐speed solar wind , 1993 .

[32]  S. Gary,et al.  Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review , 1991 .

[33]  S. Livi,et al.  Observational evidence for marginal stability of solar wind ion beams , 1987 .

[34]  S. Gary,et al.  Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility and helicity , 1986, Journal of Plasma Physics.

[35]  P. Isenberg,et al.  On the preferential acceleration and heating of solar wind heavy ions , 1982 .

[36]  W. Feldman,et al.  Electromagnetic instabilities driven by unequal proton beams in the solar wind , 1976 .

[37]  W. Feldman,et al.  Electromagnetic ion-beam instabilities in the solar wind , 1975 .

[38]  W. Feldman,et al.  Interpenetrating solar wind streams. , 1974 .

[39]  M. Goossens,et al.  Kinetic Excitation Mechanisms for ION-Cyclotron Kinetic Alfvén Waves in Sun-Earth ConnectionI , 2003 .

[40]  S. Gary,et al.  Observed constraint on proton‐proton relative velocities in the solar wind , 2000 .

[41]  H. Rosenbauer,et al.  Solar Wind Helium Ions: Observations of the Helios Solar Probes Between 0.3 and 1 AU E. MARSCH, 1 K.-H. MOHLHXUSER, 2 H. ROSENBAUER, 1 , 1982 .