Hybrid functional calculations on the band gap bowing parameters of In x Ga 1- x N

The electronic band structures and band gap bowing parameters of In x Ga1−x N are studied by the first-principles method based on the density functional theory. Calculations by employing both the Heyd-Scuseria-Ernzerh of hybrid functional (HSE06) and the Perdew-Burke-Ernzerhof (PBE) one are performed. We found that the theoretical band gap bowing parameter is dependent significantly on the calculation method, especially on the exchange-correlation functional employed in the DFT calculations. The band gap of In x Ga1−x N alloy decreases considerably when the In constituent x increases. It is the interactions of s–s and p–p orbitals between anions and cations that play significant roles in formatting the band gaps bowing. In general, the HSE06 hybrid functional could provide a good alternative to the PBE functional in calculating the band gap bowing parameters.

[1]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[2]  Yen-Kuang Kuo,et al.  Band-Gap Bowing Parameter of the AlxGa1-xN Derived from Theoretical Simulation , 2002 .

[3]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[4]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[5]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[6]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[7]  Friedhelm Bechstedt,et al.  Gap bowing and Stokes shift in InxGa1−xN alloys: First-principles studies , 2002 .

[8]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[9]  Z. Mi,et al.  Band gap of InxGa1−xN: A first principles analysis , 2011 .

[10]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[11]  Alan Francis Wright,et al.  Bowing parameters for zinc‐blende Al1−xGaxN and Ga1−xInxN , 1995 .

[12]  C. Caetano,et al.  Phase stability, chemical bonds, and gap bowing ofInxGa1−xNalloys: Comparison between cubic and wurtzite structures , 2006 .

[13]  Fengmin Wu,et al.  Influence of indium cluster on the high and constant background electron density in ternary InxGa1-xN alloys , 2012 .

[14]  J W Orton,et al.  Group III nitride semiconductors for short wavelength light-emitting devices , 1998 .

[15]  L. Romano,et al.  Effect of composition on the band gap of strained InxGa1−xN alloys , 2003 .

[16]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  P. H. Jefferson,et al.  Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors , 2008 .

[19]  Yen-Kuang Kuo,et al.  First-principles calculation for bowing parameter of wurtzite InxGa1 − xN , 2005 .

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[22]  S. T. Liu,et al.  Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing , 2011 .

[23]  Poul Georg Moses,et al.  Band bowing and band alignment in InGaN alloys , 2010 .

[24]  T. Mukai,et al.  Generation of misfit dislocations by basal-plane slip in InGaN∕GaN heterostructures , 2006 .

[25]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .