Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations

Abstract In this paper, an operable strategy to enhance the output power of piezoelectric energy harvesting from vortex-induced vibration (VIV) using nonlinear magnetic forces is proposed for the first time. Two introduced small magnets with a repulsive force are, respectively, attached on a lower support and the bottom of a circular cylinder which is subjected to a uniform wind speed. Experiments show that the natural frequency of the VIV-based energy harvester is significantly changed by varying the relative position of the two magnets and hence the synchronization region is shifted. It is observed that the proposed energy harvester displays a softening behavior due to the impact of nonlinear magnetic forces, which greatly increases the performance of the VIV-based energy harvesting system, showing a wider synchronization region and a higher level of the harvested power by 138% and 29%, respectively, compared to the classical configuration. This proposed design can provide the groundwork to promote the output power of conventional VIV-based piezoelectric generators, further enabling to realize self-powered systems.

[1]  Luigi Fortuna,et al.  A nonlinear model for ionic polymer metal composites as actuators , 2007 .

[2]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[3]  Amin Bibo,et al.  Energy harvesting under combined aerodynamic and base excitations , 2013 .

[4]  Charles H. K. Williamson,et al.  An experimental investigation of vortex-induced vibration with nonlinear restoring forces , 2013 .

[5]  Abdessattar Abdelkefi,et al.  Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations , 2014 .

[6]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[7]  E. D. Langre,et al.  Fluid-Structure Interactions: Cross-Flow-Induced Instabilities , 2010 .

[8]  Muhammad R. Hajj,et al.  Performance enhancement of piezoelectric energy harvesters from wake galloping , 2013 .

[9]  Yaowen Yang,et al.  Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester , 2013 .

[10]  A. Barrero-Gil,et al.  Energy harvesting from transverse galloping , 2010 .

[11]  Mohammed F. Daqaq,et al.  On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations , 2012 .

[12]  Mohammed F. Daqaq,et al.  Relative performance of a vibratory energy harvester in mono- and bi-stable potentials , 2011 .

[13]  Luca Gammaitoni,et al.  Kinetic energy harvesting with bistable oscillators , 2012 .

[14]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[15]  Daniel J. Inman,et al.  Towards autonomous sensing , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  Bao Gang,et al.  Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure , 2016 .

[17]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[18]  B. Alphenaar,et al.  SMART MATERIALS AND STRUCTURES , 2009 .

[19]  Abdessattar Abdelkefi,et al.  Aeroelastic energy harvesting: A review , 2016 .

[20]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[21]  Kamaldev Raghavan,et al.  VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow , 2008 .

[22]  D. Inman,et al.  Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems , 2011 .

[23]  Grzegorz Litak,et al.  On simulation of a bistable system with fractional damping in the presence of stochastic coherence resonance , 2014 .

[24]  Yiannis Andreopoulos,et al.  The performance of a self-excited fluidic energy harvester , 2012 .

[25]  A. Barrero-Gil,et al.  Enhanced mechanical energy extraction from transverse galloping using a dual mass system , 2015 .

[26]  Wei Wang,et al.  Influence of potential well depth on nonlinear tristable energy harvesting , 2015 .

[27]  Peter Woias,et al.  Characterization of different beam shapes for piezoelectric energy harvesting , 2008 .

[28]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[29]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[30]  K. Kwok,et al.  Aerodynamic Modification to a Circular Cylinder to Enhance the Piezoelectric Wind Energy Harvesting , 2016 .

[31]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[32]  Abdessattar Abdelkefi,et al.  Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations , 2015 .

[33]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[34]  Yaowen Yang,et al.  Comparative study of tip cross-sections for efficient galloping energy harvesting , 2013 .

[35]  Santiago Pindado,et al.  Extracting energy from Vortex-Induced Vibrations: A parametric study , 2012 .

[36]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[37]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[38]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[39]  Muhammad R. Hajj,et al.  Energy harvesting from a multifrequency response of a tuned bending–torsion system , 2012 .

[40]  P Woafo,et al.  Analysis of tristable energy harvesting system having fractional order viscoelastic material. , 2015, Chaos.

[41]  Yiannos Manoli,et al.  Fabrication, characterization and modelling of electrostatic micro-generators , 2009 .

[42]  Abdessattar Abdelkefi,et al.  Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations , 2014 .

[43]  B. H. Huynh,et al.  Experimental chaotic quantification in bistable vortex induced vibration systems , 2017 .

[44]  Mohammed F. Daqaq,et al.  A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon , 2016 .

[45]  Mohammed F. Daqaq,et al.  Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters , 2015 .

[46]  Abdessattar Abdelkefi,et al.  Modeling and performance of electromagnetic energy harvesting from galloping oscillations , 2015 .

[47]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[48]  K. Kwok,et al.  Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism , 2016 .

[49]  Yaowen Yang,et al.  Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations , 2016 .

[50]  Daniel J. Inman,et al.  On the energy harvesting potential of piezoaeroelastic systems , 2010 .

[51]  David A W Barton,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2010 .

[52]  Xiaobiao Shan,et al.  A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension , 2015 .

[53]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .