Solution X‐ray scattering highlights discrepancies in Plasmodium multi‐aminoacyl‐tRNA synthetase complexes

tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl‐tRNA synthetases (aaRS), the glutamyl‐ (ERS), glutaminyl‐ (QRS), and methionyl‐ (MRS) tRNA synthetases. In eukaryotes, such multi‐aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N‐terminal GST‐like domain involved in the assembly of two independent complexes: the Q‐complex (tRip:ERS:QRS) and the M‐complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST‐like domains of tRip and ERS (tRip‐N:ERS‐N) is central. In this study, the crystal structure of the N‐terminal GST‐like domain of ERS was solved and made possible further investigation of the solution architecture of the Q‐ and M‐complexes by small‐angle x‐ray scattering (SAXS). This strategy relied on the engineering of a tRip‐N‐ERS‐N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.

[1]  Johana Chicher,et al.  Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein , 2022, The Journal of biological chemistry.

[2]  D. Hassabis,et al.  AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models , 2021, Nucleic Acids Res..

[3]  A. Théobald-Dietrich,et al.  Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip , 2021, Nucleic acids research.

[4]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[5]  J. Diedrich,et al.  Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex , 2020, Nucleic Acids Research.

[6]  Sunghoon Kim,et al.  Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase. , 2019, Journal of molecular biology.

[7]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[8]  Thomas Schneider,et al.  MXCuBE2: the dawn of MXCuBE Collaboration , 2019, Journal of synchrotron radiation.

[9]  I. Polikarpov,et al.  SAXSMoW 2.0: Online calculator of the molecular weight of proteins in dilute solution from experimental SAXS data measured on a relative scale , 2018, Protein science : a publication of the Protein Society.

[10]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[11]  Richard E. Gillilan,et al.  BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis , 2017, Journal of applied crystallography.

[12]  E. Girard,et al.  Crystallophore: a versatile lanthanide complex for protein crystallography combining nucleating effects, phasing properties, and luminescence† †Electronic supplementary information (ESI) available: General procedures, Tb–Xo4 synthesis, Fig. S1–S11 and Tables S1–S4. See DOI: 10.1039/c7sc00758b , 2017, Chemical science.

[13]  J. Itié,et al.  Status of the crystallography beamlines at synchrotron SOLEIL⋆ , 2017 .

[14]  C. Francklyn Aminoacyl-tRNA synthetases. , 2017, Methods.

[15]  Patrice Vachette,et al.  US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data , 2016, Journal of applied crystallography.

[16]  S. Thiberge,et al.  Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites , 2016, Proceedings of the National Academy of Sciences.

[17]  Sunghoon Kim,et al.  Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains* , 2015, The Journal of Biological Chemistry.

[18]  Dmitri I Svergun,et al.  Ambiguity assessment of small-angle scattering curves from monodisperse systems. , 2015, Acta crystallographica. Section D, Biological crystallography.

[19]  M. Mirande,et al.  Aminoacyl-tRNA Synthetase Complexes in Evolution , 2015, International journal of molecular sciences.

[20]  Lars M Steinmetz,et al.  Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex. , 2014, Molecular cell.

[21]  H. Becker,et al.  Exploring the evolutionary diversity and assembly modes of multi‐aminoacyl‐tRNA synthetase complexes: Lessons from unicellular organisms , 2014, FEBS letters.

[22]  A. D'arcy,et al.  Microseed matrix screening for optimization in protein crystallization: what have we learned? , 2014, Acta crystallographica. Section F, Structural biology communications.

[23]  Y. Couté,et al.  Assembly of the Novel Five-Component Apicomplexan Multi-Aminoacyl-tRNA Synthetase Complex Is Driven by the Hybrid Scaffold Protein Tg-p43 , 2014, PloS one.

[24]  Pavol Skubák,et al.  Automatic protein structure solution from weak X-ray data , 2013, Nature Communications.

[25]  John A. Tainer,et al.  Accurate assessment of mass, models and resolution by small-angle scattering , 2013, Nature.

[26]  Paul Schimmel,et al.  Essential nontranslational functions of tRNA synthetases. , 2013, Nature chemical biology.

[27]  Sunghoon Kim,et al.  AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. , 2012, Journal of molecular biology.

[28]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[29]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[30]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[31]  Pavol Skubák,et al.  Multivariate phase combination improves automated crystallographic model building. , 2010, Acta crystallographica. Section D, Biological crystallography.

[32]  Sunghoon Kim,et al.  Aminoacyl‐tRNA synthetase–interacting multifunctional proteins (AIMPs): A triad for cellular homeostasis , 2010, IUBMB life.

[33]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[34]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[35]  A. Malhotra,et al.  A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). , 2009, Genes & development.

[36]  Michael Kinter,et al.  Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. , 2009, Molecular cell.

[37]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[38]  D. Suck,et al.  Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly. , 2007, Journal of molecular biology.

[39]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[40]  A. D'arcy,et al.  An automated microseed matrix-screening method for protein crystallization. , 2007, Acta crystallographica. Section D, Biological crystallography.

[41]  D. Suck,et al.  Structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA-aminoacylation and nuclear-export cofactor Arc1p reveal a novel function for an old fold. , 2006, Acta crystallographica. Section D, Biological crystallography.

[42]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[43]  Dietrich Suck,et al.  Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes , 2006, Nucleic acids research.

[44]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[45]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[46]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[47]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[48]  E. Hurt,et al.  The intracellular location of two aminoacyl‐tRNA synthetases depends on complex formation with Arc1p , 2001, The EMBO journal.

[49]  E. Hurt,et al.  Arc1p Organizes the Yeast Aminoacyl-tRNA Synthetase Complex and Stabilizes Its Interaction with the Cognate tRNAs* , 2001, The Journal of Biological Chemistry.

[50]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[51]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[52]  M. Mirande,et al.  The p43 Component of the Mammalian Multi-synthetase Complex Is Likely To Be the Precursor of the Endothelial Monocyte-activating Polypeptide II Cytokine* , 1997, The Journal of Biological Chemistry.

[53]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[54]  B. Mannervik,et al.  The Conserved N-capping Box in the Hydrophobic Core of Glutathione S-Transferase P1–1 Is Essential for Refolding , 1997, The Journal of Biological Chemistry.

[55]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[56]  A. Aceto,et al.  Identification of an N-capping box that affects the alpha 6-helix propensity in glutathione S-transferase superfamily proteins: a role for an invariant aspartic residue. , 1997, The Biochemical journal.

[57]  M. Mann,et al.  The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl‐ and glutamyl‐tRNA synthetases. , 1996, The EMBO journal.

[58]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[59]  Massimiliano Bonomi,et al.  Modeling of proteins and their assemblies with the Integrative Modeling Platform. , 2014, Methods in molecular biology.

[60]  Xiang-Lei Yang,et al.  Architecture and metamorphosis. , 2014, Topics in current chemistry.

[61]  Paolo Di Tommaso,et al.  T-Coffee: Tree-based consistency objective function for alignment evaluation. , 2014, Methods in molecular biology.

[62]  金 成勲 Aminoacyl-tRNA synthetases in biology and medicine , 2014 .

[63]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[64]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.