The role of lysine 186 in HIV-1 integrase multimerization.

[1]  Wulin Teo,et al.  An Essential Role for LEDGF/p75 in HIV Integration , 2006, Science.

[2]  Robert Craigie,et al.  Retroviral DNA integration: reaction pathway and critical intermediates , 2006, The EMBO journal.

[3]  Paul Shinn,et al.  A role for LEDGF/p75 in targeting HIV DNA integration , 2005, Nature Medicine.

[4]  A. Engelman,et al.  Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Engelman,et al.  Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75 , 2005, Nature Structural &Molecular Biology.

[6]  A. Skalka,et al.  Retroviral DNA integration and the DNA damage response , 2005, Cell Death and Differentiation.

[7]  M. Castroviejo,et al.  HIV-1 integrase crosslinked oligomers are active in vitro , 2005, Nucleic acids research.

[8]  A. Engelman,et al.  Genetic Analyses of DNA-Binding Mutants in the Catalytic Core Domain of Human Immunodeficiency Virus Type 1 Integrase , 2005, Journal of Virology.

[9]  A. Engelman,et al.  Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication , 2004, Journal of Virology.

[10]  M. Llano,et al.  LEDGF/p75 Determines Cellular Trafficking of Diverse Lentiviral but Not Murine Oncoretroviral Integrase Proteins and Is a Component of Functional Lentiviral Preintegration Complexes , 2004, Journal of Virology.

[11]  Yuntao Wu,et al.  Early Transcription from Nonintegrated DNA in Human Immunodeficiency Virus Infection , 2003, Journal of Virology.

[12]  A. Fassati,et al.  Structural Analyses of Purified Human Immunodeficiency Virus Type 1 Intracellular Reverse Transcription Complexes , 2003, Journal of Virology.

[13]  I. Chen,et al.  Human Immunodeficiency Virus Type 1 (HIV-1) Vpr Enhances Expression from Unintegrated HIV-1 DNA , 2003, Journal of Virology.

[14]  P. Pandolfi,et al.  As2O3 Enhances Retroviral Reverse Transcription and Counteracts Ref1 Antiviral Activity , 2003, Journal of Virology.

[15]  Zeger Debyser,et al.  HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells* , 2003, The Journal of Biological Chemistry.

[16]  J. Mouscadet,et al.  Disulfide-Linked Integrase Oligomers Involving C280 Residues Are Formed In Vitro and In Vivo but Are Not Essential for Human Immunodeficiency Virus Replication , 2003, Journal of Virology.

[17]  J Andrew McCammon,et al.  Modeling HIV-1 integrase complexes based on their hydrodynamic properties. , 2003, Biopolymers.

[18]  Wei Yang,et al.  Structure of a two‐domain fragment of HIV‐1 integrase: implications for domain organization in the intact protein , 2001, The EMBO journal.

[19]  A. Engelman,et al.  Human Immunodeficiency Virus Type 1 Replication in the Absence of Integrase-Mediated DNA Recombination: Definition of Permissive and Nonpermissive T-Cell Lines , 2001, Journal of Virology.

[20]  Yuntao Wu,et al.  Selective Transcription and Modulation of Resting T Cell Activity by Preintegrated HIV DNA , 2001, Science.

[21]  Kui Gao,et al.  Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes , 2001, The EMBO journal.

[22]  Robert Craigie,et al.  HIV Integrase, a Brief Overview from Chemistry to Therapeutics* , 2001, The Journal of Biological Chemistry.

[23]  O. Schwartz,et al.  The Karyophilic Properties of Human Immunodeficiency Virus Type 1 Integrase Are Not Required for Nuclear Import of Proviral DNA , 2000, Journal of Virology.

[24]  R M Stroud,et al.  Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Masuda,et al.  Identification of Critical Amino Acid Residues in Human Immunodeficiency Virus Type 1 IN Required for Efficient Proviral DNA Formation at Steps prior to Integration in Dividing and Nondividing Cells , 2000, Journal of virology.

[26]  Luc Montagnier,et al.  HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap , 2000, Cell.

[27]  C. Péchoux,et al.  Multiple Effects of an Anti-Human Immunodeficiency Virus Nucleocapsid Inhibitor on Virus Morphology and Replication , 1999, Journal of Virology.

[28]  E. De Clercq,et al.  Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein. , 1999, Virology.

[29]  O. Schwartz,et al.  Oligomerization within Virions and Subcellular Localization of Human Immunodeficiency Virus Type 1 Integrase , 1999, Journal of Virology.

[30]  Patrick L. Hindmarsh,et al.  Retroviral DNA Integration , 1984, Microbiology and Molecular Biology Reviews.

[31]  R. Plasterk,et al.  Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding , 1998, Journal of Virology.

[32]  P. Brown,et al.  Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex. , 1998, Biochemistry.

[33]  Luigi Naldini,et al.  Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo , 1997, Nature Biotechnology.

[34]  J. Boeke,et al.  Complementation of integrase function in HIV‐1 virions , 1997, The EMBO journal.

[35]  F. Bushman,et al.  Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites , 1997, Journal of virology.

[36]  R. Craigie,et al.  Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Engelman,et al.  A Soluble Active Mutant of HIV-1 Integrase , 1996, The Journal of Biological Chemistry.

[38]  P. Brown,et al.  An Essential Interaction between Distinct Domains of HIV-1 Integrase Mediates Assembly of the Active Multimer (*) , 1995, The Journal of Biological Chemistry.

[39]  M. Muesing,et al.  Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells , 1995, Journal of virology.

[40]  A. Engelman,et al.  Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. , 1994, Science.

[41]  S. Goff,et al.  Genetic analysis of homomeric interactions of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. Bushman,et al.  Identification of discrete functional domains of HIV‐1 integrase and their organization within an active multimeric complex. , 1993, The EMBO journal.

[43]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[44]  F. Bushman,et al.  Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Plasterk,et al.  Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. , 1993, Nucleic acids research.

[46]  P. Brown,et al.  Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations , 1993, Journal of virology.

[47]  A. Engelman,et al.  Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro , 1992, Journal of virology.

[48]  A. Skalka,et al.  Retroviral integrase functions as a multimer and can turn over catalytically. , 1992, The Journal of biological chemistry.

[49]  A. Skalka,et al.  Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases , 1992, Molecular and cellular biology.

[50]  D. Baltimore,et al.  The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Robert Craigie,et al.  The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro , 1990, Cell.

[52]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[53]  H. Gendelman,et al.  Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone , 1986, Journal of virology.