The Vertical-Cavity Surface-Emitting Laser as a Sensing Device

We show that a change to the quality (Q) factor of a laser diode cavity affects the electrical properties of the device. The mechanism is demonstrated experimentally and numerically via a 980-nm InGaAs/GaAs oxide-aperture vertical-cavity surface-emitting laser (VCSEL) wherewith thin, sub-half-lambda-thick Six Ny layers are deposited on top of the VCSEL's top-coupling distributed Bragg reflector (DBR) mirror to modify the DBR's power reflectance. The presence of such a mechanism enables the detection of a substance that rests on or is in close proximity to the exposed DBR when the substance modifies the Q factor of the laser diode. As an example, we numerically analyze the influence of the change of the refractive index and absorption of a substance in the proximity of a 1651-nm AlInGaAs/InP VCSEL with a top mirror in the form of a monolithic subwavelength high-index contrast grating (MHCG). Such a design enables the detection of methane near the MHCG by changing the properties of the resonating light in the proximity of the grating. We show that this sensing mechanism enables the construction of a new compact optical sensing system without the need for a photodetector.

[1]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[2]  Fumio Koyama,et al.  Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. , 2010, Optics express.

[3]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[4]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[5]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[6]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[7]  M. Bugajski,et al.  Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. , 2015, Optics express.

[8]  R. Tuley,et al.  Band gap dependent thermophotovoltaic device performance using the InGaAs and InGaAsP material system , 2010 .

[9]  R. Michalzik,et al.  Optical Modal Features of a VECSEL-Based Optofluidic Device for Microparticle Sensing , 2013, IEEE Journal of Quantum Electronics.

[10]  Uwe Fink,et al.  Properties Of Semiconductor Alloys Group Iv Iii V And Ii Vi Semiconductors , 2016 .

[11]  C. Honsberg,et al.  Defect Creation in InGaAs/GaAs Multiple Quantum Wells – II. Optical Properties , 2015 .

[12]  Robert W Boyd,et al.  Slow-light fourier transform interferometer. , 2007, Physical review letters.

[13]  A. Syrbu,et al.  1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range , 2004 .

[14]  James A. Lott,et al.  Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs , 2016, IEEE Photonics Technology Letters.

[15]  Ye Zhou,et al.  Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. , 2008, Optics express.

[16]  J. Tourrenc,et al.  Strongly sub-Poissonian electrical noise in 1.55-/spl mu/m DBR tunable laser diodes , 2004, IEEE Journal of Quantum Electronics.

[17]  Enhanced spectral sensitivity of a chip-scale photonic-crystal slow-light interferometer. , 2016, Optics letters.

[18]  Anjin Liu,et al.  Integrated High-Contrast-Grating Optical Sensor Using Guided Mode , 2015, IEEE Journal of Quantum Electronics.

[19]  J. Mork,et al.  Subwavelength Grating-Mirror VCSEL With a Thin Oxide Gap , 2008, IEEE Photonics Technology Letters.

[20]  H. Ryu,et al.  Oxide-apertured photodetector integrated on vertical cavity surface emitting laser , 1999 .

[21]  B B Bakir,et al.  Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible Integration , 2011, Journal of Lightwave Technology.

[22]  K. Panajotov,et al.  PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures. , 2005, Optics express.

[23]  A. Fali,et al.  Effects of the carrier relaxation lifetime and inhomogeneous broadening on the modulation response of InGaAs/GaAs self-assembled quantum-dot lasers , 2014 .

[24]  V. Palenskis,et al.  Fluctuations of Optical and Electrical Parameters and Their Correlation of Multiple-Quantum-Well INGAAS/INP Lasers , 2004 .

[25]  A. Mereuta,et al.  Numerical Analysis of Mode Discrimination by Intracavity Patterning in Long-Wavelength Wafer-Fused Vertical-Cavity Surface-Emitting Lasers , 2014, IEEE Journal of Quantum Electronics.

[26]  Simulation of an operation of zinc oxide light‐emitting diodes , 2011 .

[27]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[28]  Tomasz Czyszanowski,et al.  Optimal parameters of monolithic high-contrast grating mirrors. , 2016, Optics letters.

[29]  E. F. Schubert,et al.  Doping in III-V Semiconductors , 1993 .

[30]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[31]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .