Letter. A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites

Abstract The recently recovered Antarctic achondrites Graves Nunatak 06128 and 06129 are unique meteorites that represent high-temperature asteroidal processes in the early solar system never before identified in any other meteorite. They represent products of early planetesimal melting (4564.25 ± 0.21 Ma) and subsequent metamorphism of an unsampled geochemical reservoir from an asteroid that has characteristics similar to the brachinite parent body. This melting event is unlike those predicted by previous experimental or geochemical studies, and indicates either disequilibrium melting of chondritic material or melting of chondritic material under volatile-rich conditions.

[1]  L. Taylor,et al.  Petrogenesis of the Differentiated Achondrite GRA 06129: Trace Elements and Chronology , 2008 .

[2]  K. Saiki,et al.  Unique Achondrites GRA 06128/06129: Andesitic Partial Melt from a Volatile-rich Parent Body , 2008 .

[3]  R. Korotev,et al.  Petrology, Geochemistry, and Likely Provenance of Unique Achondrite Graves Nunataks 06128 , 2008 .

[4]  M. Bizzarro,et al.  Extremely Brief Formation Interval for Refractory Inclusions and Uniform Distribution of 26Al in the Early Solar System , 2006 .

[5]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[6]  M. Drake,et al.  A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars , 2005 .

[7]  R. Carlson,et al.  Time Scales of Planetesimal Differentiation in the Early Solar System , 2005 .

[8]  C. Shearer,et al.  Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process , 2003 .

[9]  Y. Amelin,et al.  Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions , 2002, Science.

[10]  R. Jones,et al.  Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes , 2001 .

[11]  M. Prinz,et al.  Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .

[12]  D. Mittlefehldt,et al.  Mineralogy, petrology, chemistry, and 39Ar-40Ar and exposure ages of the Caddo County IAB iron: evidence for early partial melt segregation of a gabbro area rich in plagioclase-diopside , 2000 .

[13]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[14]  G. Lugmair,et al.  53Mn-53Cr Systematics in Brachina: A Record of One of the Earliest Phases of Igneous Activity on an Asteroid , 1998 .

[15]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[16]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[17]  R. Clayton,et al.  Brachinites: A New Primitive Achondrite Group , 1992 .

[18]  M. Ghiorso,et al.  Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas , 1991 .

[19]  Mark S. Ghiorso,et al.  Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .

[20]  D. Mittlefehldt,et al.  Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.

[21]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .