Optically Pumped Magnetometers for Practical MEG-Based Brain-Computer Interfacing

[1]  Emmanuel Maby,et al.  Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation Décoder la cinématique d'un mouvement de la main à partir d'enregistrements MEG et EEG: des interfaces cerveau-machine à la réhabilitation motrice , 2011 .

[2]  Dorothy A. Thompson,et al.  Conditional Dicer1 depletion using Chrnb4-Cre leads to cone cell death and impaired photopic vision , 2019, Scientific Reports.

[3]  Thomas Hofmann,et al.  A brain computer interface with online feedback based on magnetoencephalography , 2005, ICML.

[4]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[5]  Wolfgang Rosenstiel,et al.  An MEG-based brain–computer interface (BCI) , 2007, NeuroImage.

[6]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[7]  Matthew J. Brookes,et al.  Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system , 2020, NeuroImage.

[8]  Marc Van Hulle,et al.  Robust Single-Trial EEG-Based Authentication Achieved with a 2-Stage Classifier , 2020, Biosensors.

[9]  Niall Holmes,et al.  Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography , 2019, Scientific Reports.

[10]  L. Cohen,et al.  Brain–machine interface in chronic stroke rehabilitation: A controlled study , 2013, Annals of neurology.

[11]  F. D. Silva,et al.  EEG and MEG: Relevance to Neuroscience , 2013, Neuron.

[12]  D. Krusienski,et al.  Control of a brain–computer interface using stereotactic depth electrodes in and adjacent to the hippocampus , 2011, Journal of neural engineering.

[13]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[14]  Chadwick Boulay,et al.  Therapeutic Applications of BCI Technologies. , 2017, Brain computer interfaces.

[15]  M. Beaumont,et al.  Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year , 2019, Nature Communications.

[16]  Francis R. Willett,et al.  High performance communication by people with paralysis using an intracortical brain-computer interface , 2017, eLife.

[17]  E. Musk An Integrated Brain-Machine Interface Platform With Thousands of Channels , 2019, Journal of medical Internet research.

[18]  Hanna-Leena Halme,et al.  Comparing Features for Classification of MEG Responses to Motor Imagery , 2016, PloS one.

[19]  Mark W. Woolrich,et al.  A tool for functional brain imaging with lifespan compliance , 2019, Nature Communications.

[20]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[21]  N. Ramsey,et al.  Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS. , 2016, The New England journal of medicine.

[22]  Arne Robben,et al.  Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain–computer interfacing , 2013, Journal of neural engineering.

[23]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[24]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[25]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update , 2018, Journal of neural engineering.

[26]  Marc M. Van Hulle,et al.  Hierarchical online SSVEP spelling achieved with spatiotemporal beamforming , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[27]  Marc M. Van Hulle,et al.  Decoding Steady-State Visual Evoked Potentials From Electrocorticography , 2018, Front. Neuroinform..

[28]  Tsuyoshi Inoue,et al.  Brain signal pattern of engrossed subjects using near infrared spectroscopy (NIRS) and its application to TV commercial evaluation , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[29]  M. Sturm,et al.  Minimizing magnetic fields for precision experiments , 2015, 1501.07408.

[30]  Jennifer L. Collinger,et al.  MEG-based neurofeedback for hand rehabilitation , 2015, Journal of NeuroEngineering and Rehabilitation.

[31]  S Taulu,et al.  Artifact and head movement compensation in MEG. , 2007, Neurology, neurophysiology, and neuroscience.

[32]  M. Tsolaki,et al.  EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century , 2018, Front. Hum. Neurosci..

[33]  Marc M. Van Hulle,et al.  Spatiotemporal Beamforming: A Transparent and Unified Decoding Approach to Synchronous Visual Brain-Computer Interfacing , 2017, Front. Neurosci..

[34]  Matthew J. Brookes,et al.  A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography , 2018, NeuroImage.

[35]  Matthew J. Brookes,et al.  Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography , 2019, NeuroImage.

[36]  Wolfgang Rosenstiel,et al.  Adaptive SVM-Based Classification Increases Performance of a MEG-Based Brain-Computer Interface (BCI) , 2012, ICANN.

[37]  F. H. Lopes da Silva EEG and MEG: relevance to neuroscience. , 2013, Neuron.

[38]  Manal Abdel Wahed,et al.  The use of MEG-based brain computer interface for classification of wrist movements in four different directions , 2011, 2011 28th National Radio Science Conference (NRSC).

[39]  Benjamin Wittevrongel,et al.  Frequency- and Phase Encoded SSVEP Using Spatiotemporal Beamforming , 2016, PloS one.