Physical and Numerical Experiments on an Under-Expanded Jet

AbstractThe axial characteristics of axisymmetric under-expanded sonic jets are dealt with, both experimentally and numerically. Experiments were carried out in a test rig where a sonic nozzle discharged into an ambient which could be kept at different pressures. The density measurements were taken by means of a differential interferometer. The numerical simulation was obtained by adapting a code by Bird (1994) which is based on the MonteCarlo method. The comparison between experimental data and numerical results was carried out by considering the density distribution along the axis of the jet. The direct simulation was then applied to explore the jet characteristics in a rather wide range of the dimensionless products upon which the phenomenology depends. New expressions are presented for the density distribution along the jet axis and for the location of the Mach disk. Sommario. Si trattano sia sperimentalmente che numericamente le caratteristiche assiali di getti assialsimmetrici sonici sottoespansi. Gli esperimenti sono stati eseguiti con ugelli sonici in ambienti a pressione variabile. La densità è stata misurata mediante un interferometro differenziale e le simulazioni sono state condotte mediante un codice basato sul metodo MonteCarlo. Il confronto tra dati sperimentali e numerici è basato sulla distribuzione di densità lungo l'asse del getto. La simulazione diretta è stata poi applicata allo studio del getto in un ampio campo di valori dei numeri caratteristici. Si discutono la distribuzione della densità lungo l'asse e la posizione del disco di Mach, ottenute sia dai dati sperimentali che dai risultati numerici e si propongono per esse nuove espressioni.

[1]  Shiyi Bai,et al.  Fluid dynamics of jets , 1954 .

[2]  Eugene S. Love,et al.  Experimental and Theoretical Studies of Axisymmetric Free Jets , 1959 .

[3]  Philip J. Morris,et al.  A linear shock cell model for jets of arbitrary exit geometry , 1989 .

[4]  Anjaneyulu Krothapalli,et al.  Streamwise vortices in an underexpanded axisymmetric jet , 1991 .

[5]  Wen S. Young,et al.  Derivation of the free‐jet Mach‐disk location using the entropy‐balance principle , 1975 .

[6]  D. C. Pack A NOTE ON PRANDTL'S FORMULA FOR THE WAVE-LENGTH OF A SUPERSONIC GAS JET , 1950 .

[7]  H. Schlichting Boundary Layer Theory , 1955 .

[8]  G. Smeets Flow Diagnostics by Laser Interferometry , 1977, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Paul V. Tartabini,et al.  Direct simulation Monte Carlo calculation of a jet interaction experiment , 1995 .

[10]  E. P. Muntz,et al.  Some Characteristics of Exhaust Plume Rarefaction , 1970 .

[11]  Iain D. Boyd,et al.  Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen , 1992 .

[12]  F. S. Sherman,et al.  The Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels , 1965 .

[13]  Tieh-Feng Hu,et al.  Flow and Acoustic Properties of Low Reynolds Number Underexpanded Supersonic Jets. Ph.D. Thesis , 1981 .

[14]  Gregory S Elliott,et al.  On streamwise vortices in high Reynolds number supersonic axisymmetric jets , 1993 .

[15]  John M. Seiner,et al.  A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets , 1985, Journal of Fluid Mechanics.

[16]  G. Smeets,et al.  Laser Interferometer for High Sensitivity Measurements on Transient Phase Objects , 1972, IEEE Transactions on Aerospace and Electronic Systems.