Constructing strongly-MDS convolutional codes with maximum distance profile

This paper revisits strongly-MDS convolutional codes with maximum distance profile (MDP). These are (non-binary) convolutional codes that have an optimum sequence of column distances and attains the generalized Singleton bound at the earliest possible time frame. These properties make these convolutional codes applicable over the erasure channel, since they are able to correct a large number of erasures per time interval. The existence of these codes have been shown only for some specific cases. This paper shows by construction the existence of convolutional codes that are both strongly-MDS and MDP for all choices of parameters.

[1]  Ron M. Roth,et al.  On generator matrices of MDS codes , 1985, IEEE Trans. Inf. Theory.

[2]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[3]  Joachim Rosenthal,et al.  Decoding of Convolutional Codes Over the Erasure Channel , 2012, IEEE Transactions on Information Theory.

[4]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[5]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[6]  Jochen Trumpf,et al.  On superregular matrices and MDP convolutional codes , 2008 .

[7]  Ettore Fornasini,et al.  Matrix fraction descriptions in convolutional coding , 2004 .

[8]  Diego Napp Avelli,et al.  Maximum Distance Separable 2D Convolutional Codes , 2016, IEEE Transactions on Information Theory.

[9]  Amir K. Khandani,et al.  Coding over an erasure channel with a large alphabet size , 2008, 2008 IEEE International Symposium on Information Theory.

[10]  Joachim Rosenthal,et al.  Reverse-maximum distance profile convolutional codes over the erasure channel , 2010 .

[11]  Marvin A. Epstein,et al.  Algebraic decoding for a binary erasure channel , 1958 .

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  Diego Napp Avelli,et al.  A new class of superregular matrices and MDP convolutional codes , 2013, ArXiv.

[14]  G. David Forney,et al.  Structural analysis of convolutional codes via dual codes , 1973, IEEE Trans. Inf. Theory.

[15]  Jérôme Lacan,et al.  Systematic MDS erasure codes based on Vandermonde matrices , 2004, IEEE Communications Letters.

[16]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[17]  Ron M. Roth,et al.  On MDS codes via Cauchy matrices , 1989, IEEE Trans. Inf. Theory.

[18]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.

[19]  Virtudes Tomás Estevan Complete-mdp convolutional codes over the erasure channel , 2011 .

[20]  Ryan Hutchinson The Existence of Strongly MDS Convolutional Codes , 2008, SIAM J. Control. Optim..

[21]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[22]  Vern Paxson,et al.  End-to-end Internet packet dynamics , 1997, SIGCOMM '97.

[23]  Diego Napp Avelli,et al.  Superregular matrices and applications to convolutional codes , 2016, ArXiv.

[24]  Joachim Rosenthal,et al.  Decoding of MDP convolutional codes over the erasure channel , 2009, 2009 IEEE International Symposium on Information Theory.

[25]  Masayuki Arai,et al.  Analysis of using convolutional codes to recover packet losses over burst erasure channels , 2001, Proceedings 2001 Pacific Rim International Symposium on Dependable Computing.