Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method

To simulate the contact nonlinearity in 2D solid problems, a contact analysis approach is formulated using incremental form of the subdomain parametric variational principle (SPVP). The formulation is based on a linearly conforming radial point interpolation method (LC-RPIM) using nodal integration technique. Contact interface equations are also presented using a modified Coulomb frictional contact model and discretized by contact point-pairs. In the present approach, the global discretized system equations are transformed into a standard linear complementarity problem (LCP) that can be solved readily using the Lemke method. The present approach can simulate various contact behaviors including bonding/debonding, contacting/departing, and sticking/slipping. An intensive numerical study is performed to validate the proposed method via comparison with the ABAQUS® and to investigate the effects of the various parameters used in computations. These parameters include normal and tangential adhesions, frictional coefficient, nodal density, the dimension of local nodal support domain, nodal irregularity, shape parameters used in the radial basis function and the external load. The numerical results have demonstrated that the present approach is accurate and stable for contact analysis of 2D solids.

[1]  Ted Belytschko,et al.  Smoothing, enrichment and contact in the element-free Galerkin method , 1999 .

[2]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[3]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[4]  Peter Wriggers,et al.  A note on the optimum choice for penalty parameters , 1987 .

[5]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[6]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[7]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[9]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[10]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[11]  Hyun Gyu Kim,et al.  Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .

[12]  G. Shi,et al.  Discontinuous Deformation Analysis , 1984 .

[13]  K. Y. Dai,et al.  A mesh-free minimum length method for 2-D problems , 2006 .

[14]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[15]  A. Curnier A Theory of Friction , 1984 .

[16]  Adib A. Becker,et al.  Independent meshing of contacting surfaces using fictitious nodes in boundary element analysis , 1993 .

[17]  P. Wriggers,et al.  On contact between three-dimensional beams undergoing large deflections , 1997 .

[18]  M. Golberg,et al.  Improved multiquadric approximation for partial differential equations , 1996 .

[19]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[20]  Seán Dineen Multivariate calculus and geometry , 1998 .

[21]  Peter Wriggers,et al.  A simple formulation for two‐dimensional contact problems using a moving friction cone , 2003 .

[22]  Jiun-Shyan Chen,et al.  A new algorithm for numerical solution of dynamic elastic–plastic hardening and softening problems , 2003 .

[23]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[24]  Mohammed Hjiaj,et al.  An improved discrete element method based on a variational formulation of the frictional contact law , 2002 .

[25]  P. Wriggers,et al.  Application of augmented Lagrangian techniques for non‐linear constitutive laws in contact interfaces , 1993 .

[26]  G. R. Liu,et al.  1013 Mesh Free Methods : Moving beyond the Finite Element Method , 2003 .

[27]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[28]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[29]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[30]  W. Zhong,et al.  Parametric variational principles and their quadratic programming solutions in plasticity , 1988 .

[31]  Patrick Chabrand,et al.  Various numerical methods for solving unilateral contact problems with friction , 1998 .

[32]  YuanTong Gu,et al.  Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods , 2003 .

[33]  K. Y. Dai,et al.  A LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD FOR SOLID MECHANICS PROBLEMS , 2006 .

[34]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[35]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[36]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[37]  Z. Dostál,et al.  Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians , 1996 .

[38]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[39]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[40]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[41]  G. Liu Meshless Local Petrov-Galerkin ( MLPG ) method in combination with finite element and boundary element approaches , 2008 .

[42]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[43]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[44]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[45]  P. Wriggers,et al.  A method for solving contact problems , 1998 .

[46]  Y. Cheng,et al.  Advancements and improvement in discontinuous deformation analysis , 1998 .

[47]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[48]  J. Marsden,et al.  Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .

[49]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[50]  P. Panagiotopoulos,et al.  New developments in contact problems , 1999 .

[51]  Anders Klarbring,et al.  Contact, Friction, Discrete Mechanical Structures and Mathematical Programming , 1999 .

[52]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[53]  M. Raous,et al.  Quasistatic Signorini Problem with Coulomb Friction and Coupling to Adhesion , 1999 .

[54]  Panayiotis Papadopoulos,et al.  A Lagrange multiplier method for the finite element solution of frictionless contact problems , 1998 .

[55]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[56]  A. Curnier,et al.  A model of adhesion coupled to contact and friction , 2003 .

[57]  H. Gun,et al.  Boundary element analysis of 3-D elasto-plastic contact problems with friction , 2004 .

[58]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[59]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[60]  John W. Gillespie,et al.  Meshless solutions of 2D contact problems by subdomain variational inequality and MLPG method with radial basis functions , 2005 .