A Trinomial Test for Paired Data When There are Many Ties
暂无分享,去创建一个
[1] Wilfrid J. Dixon,et al. An Introduction to Statistical Analysis , 1951 .
[2] A. Huitson,et al. Bibliography on Non-Parametric Statistics. , 1963 .
[3] Bruce E. Hansen,et al. Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .
[4] F. Massey,et al. Introduction to Statistical Analysis , 1970 .
[5] A. Mood,et al. The statistical sign test. , 1946, Journal of the American Statistical Association.
[6] D. Andrews,et al. Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .
[7] W. J. Dixon,et al. Introduction to Statistical Analysis , 1951 .
[8] Albrecht Irle,et al. Note on the Sign Test in the Presence of Ties , 1980 .
[9] Knut M. Wittkowski,et al. An asymptotic UMP sign test for discretised data , 1989 .
[10] W. J. Dixon,et al. Power Functions of the Sign Test and Power Efficiency for Normal Alternatives , 1953 .
[11] J. Putter. The Treatment of Ties in Some Nonparametric Tests , 1955 .
[12] R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .
[13] C. W. Coakley,et al. Versions of the Sign Test in the Presence of Ties , 1996 .
[14] W. W. Daniel. Applied Nonparametric Statistics , 1979 .
[15] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[16] S. Shott,et al. Nonparametric Statistics , 2018, The Encyclopedia of Archaeological Sciences.
[17] J. Hemelrijk,et al. A theorem on the sign test when ties are present , 1952 .
[18] William J. Mackinnon,et al. Table for Both the Sign Test and Distribution-Free Confidence Intervals of the Median for Sample Sizes to 1,000 , 1964 .
[19] Paul S. Dwyer,et al. Basic Instructions in Statistical Computations , 1957 .
[20] William G. Cochran,et al. An Introduction to Statistical Analysis. , 1952 .
[21] John E. Walsh,et al. On the Power Function of the Sign Test for Slippage of Means , 1946 .