Using Sequential Statistical Tests to Improve the Performance of Random Search in hyperparameter Tuning

Hyperparamter tuning is one of the the most time-consuming parts in machine learning: The performance of a large number of different hyperparameter settings has to be evaluated to find the best one. Although modern optimization algorithms exist that minimize the number of evaluations needed, the evaluation of a single setting is still expensive: Using a resampling technique, the machine learning method has to be fitted a fixed number of K times on different training data sets. As an estimator for the performance of the setting the respective mean value of the K fits is used. Many hyperparameter settings could be discarded after less than K resampling iterations, because they already are clearly inferior to high performing settings. However, in practice, the resampling is often performed until the very end, wasting a lot of computational effort. We propose to use a sequential testing procedure to minimize the number of resampling iterations to detect inferior parameter setting. To do so, we first analyze the distribution of resampling errors, we will find out, that a log-normal distribution is promising. Afterwards, we build a sequential testing procedure assuming this distribution. This sequential test procedure is utilized within a random search algorithm. We compare a standard random search with our enhanced sequential random search in some realistic data situation. It can be shown that the sequential random search is able to find comparably good hyperparameter settings, however, the computational time needed to find those settings is roughly halved.