Cardiac fibrillation risks with TASER conducted electrical weapons

The TASER® conducted electrical weapon (CEW) delivers electrical pulses that can temporarily incapacitate subjects. We analyzed the cardiac fibrillation risk with TASER CEWs. Our risk model accounted for realistic body mass index distributions, used a new model of effects of partial or oblique dart penetration and used recent epidemiological CEW statics.

[1]  Jeffrey D. Ho,et al.  An Incident-Level Profile of TASER Device Deployments in Arrest-Related Deaths , 2013 .

[2]  Dorin Panescu,et al.  Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[3]  Dorin Panescu,et al.  Theoretical possibility of ventricular fibrillation during use of TASER neuromuscular incapacitation devices , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Norbert Leitgeb,et al.  Cardiac fibrillation risk of TASER X-26 dart mode application , 2011, Wiener Medizinische Wochenschrift.

[5]  William P. Bozeman,et al.  Transcardiac conducted electrical weapon (TASER) probe deployments: incidence and outcomes. , 2012, The Journal of emergency medicine.

[6]  Dorin Panescu,et al.  Limitations of animal electrical cardiac safety models , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  P. OSYPKA,et al.  Meßtechnische Untersuchungen über Stromstärke, Einwirkungsdauer und Stromweg bei elektrischen Wechselstromunfällen an Mensch und Tier. Bedeutung und Auswertung für Starkstromanlagen , 1963 .

[8]  Kevin K. Tremper,et al.  Principles of Applied Biomedical Instrumentation, 3rd Edition , 1990 .

[9]  D. Panescu,et al.  A nonlinear finite element model of the electrode-electrolyte-skin system , 1994, IEEE Transactions on Biomedical Engineering.

[10]  Mark W. Kroll,et al.  Ventricular fibrillation risk estimation for conducted electrical weapons: Critical convolutions , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[11]  Michael Graham,et al.  Investigation of Deaths Temporally Associated with Law Enforcement Apprehension , 2014 .

[12]  G. Chatellier,et al.  Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography , 1999, European Radiology.

[13]  Norbert Leitgeb,et al.  Cardiac Fibrillation Risk of Taser Weapons , 2014, Health physics.

[14]  Hongyu Sun,et al.  Taser Dart-to-Heart Distance That Causes Ventricular Fibrillation in Pigs , 2007, IEEE Transactions on Biomedical Engineering.

[15]  P. M. Zoll,et al.  Noninvasive Cardiac Stimulation Revisited , 1990, Pacing and clinical electrophysiology : PACE.

[16]  S Saha,et al.  Electrical properties of bone. A review. , 1984, Clinical orthopaedics and related research.

[17]  Charles F. Dalziel,et al.  A Study of the Hazards of Impulse Currents [includes discussion] , 1953, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[18]  James E. Brewer,et al.  Field Statistics Overview , 2009 .

[19]  A. Wallace,et al.  Factors Determining Vulnerability to Ventricular Fibrillation Induced by 60‐CPS Alternating Current , 1967, Circulation research.

[20]  L A Geddes,et al.  Myocardial Stimulation with Ultrashort Duration Current Pulses , 1982, Pacing and clinical electrophysiology : PACE.

[21]  G. Biegelmeier,et al.  New considerations on the threshold of ventricular fibrillation for a.c.shocks at 50–60 Hz , 1980 .

[22]  Patrick J. Tchou,et al.  Abstract 115: Relationship of Body Mass Index (BMI) to Minimum Distance from Skin Surface to Myocardium: Implications for Neuromuscular Incapacitating Devices (NMID) , 2007 .

[23]  Matthias Graw,et al.  Cardiac Changes Due to Electronic Control Devices? A Computer‐Based Analysis of Electrical Effects at the Human Heart Caused by an ECD Pulse Applied to the Body's Exterior , 2014, Journal of forensic sciences.

[24]  P. OSYPKA Meßtechnische Untersuchungen über Stromstärke, Einwirkungsdauer und Stromweg bei elektrisdien Wechselstromunfällen an Mensch und Tier. Bedeutung und Auswertung für Starkstromanlagen , 1963 .

[25]  Gregory P. Walcott,et al.  Ventricular fibrillation: are swine a sensitive species? , 2015, Journal of Interventional Cardiac Electrophysiology.

[26]  D. Panescu,et al.  Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax , 1995, IEEE Transactions on Biomedical Engineering.

[27]  S J Stratton,et al.  Factors associated with sudden death of individuals requiring restraint for excited delirium. , 2001, The American journal of emergency medicine.

[28]  L A Geddes,et al.  Safety Factor for Precordial Pacing: Minimum Current Thresholds for Pacing and for Ventricular Fibrillation by Vulnerable‐period Stimulation , 1984, Pacing and clinical electrophysiology : PACE.

[29]  P. Diamantopoulos,et al.  Electromagnetic modelling of current flow in the heart from TASER devices and the risk of cardiac dysrhythmias , 2007, Physics in medicine and biology.

[30]  John G. Webster,et al.  ELECTROMUSCULAR INCAPACITATING DEVICE SAFETY , 2005 .

[31]  S. Zoledziowski,et al.  Ventricular fibrillation threshold for AC shocks of long duration, in dogs with normal acid-base state , 1973, British journal of industrial medicine.

[32]  Mark W Kroll,et al.  Electrical Characteristics of an Electronic Control Device Under a Physiologic Load: A Brief Report , 2010, Pacing and clinical electrophysiology : PACE.