Four new planetesimals around typical and pre-main-sequence  stars (PLATYPUS) debris discs at 8.8 mm

Millimetre continuum observations of debris discs can provide insights into the physical and dynamical properties of the unseen planetesimals that these discs host. The material properties and collisional models of planetesimals leave their signature on the grain size distribution, which can be traced through the millimetre spectral index. We present 8.8 mm observations of the debris discs HD 48370, CPD-72 2713, HD 131488, and HD 32297 using the Australian Telescope Compact Array (ATCA) as part of the PLanetesimals Around TYpical Pre-main-seqUence Stars (PLATYPUS) survey. We detect all four targets with a characteristic beam size of 5 arcsec and derive a grain size distribution parameter that is consistent with collisional cascade models and theoretical predictions for parent planetesimal bodies where binding is dominated by self-gravity. We combine our sample with 19 other millimetre-wavelength-detected debris discs from the literature and calculate a weighted mean grain size power-law index that is close to analytical predictions for a classical steady-state collisional cascade model. We suggest the possibility of two distributions of q in our debris disc sample; a broad distribution (where q ∼ 3.2–3.7) for ‘typical’ debris discs (gas-poor/non-detection), and a narrow distribution (where q < 3.2) for bright gas-rich discs. Or alternatively, we suggest that there exists an observational bias between the grain size distribution parameter and absolute flux that may be attributed to the detection rates of faint debris discs at $\rm \sim$cm wavelengths.

[1]  F. Ménard,et al.  Dust traps and the formation of cavities in transition discs: a millimetre to sub-millimetre comparison survey , 2021, 2102.02316.

[2]  L. Wang,et al.  A search for trends in spatially resolved debris discs at far-infrared wavelengths , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  T. Löhne Relating grain size distributions in circumstellar discs to the spectral index at millimetre wavelengths , 2020 .

[4]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[5]  P. Ábrahám,et al.  The Big Sibling of AU Mic: A Cold Dust-rich Debris Disk around CP−72 2713 in the β Pic Moving Group , 2020, The Astronomical Journal.

[6]  Jason J. Wang,et al.  Debris Disk Results from the Gemini Planet Imager Exoplanet Survey's Polarimetric Imaging Campaign , 2020, The Astronomical Journal.

[7]  Jason J. Wang,et al.  The Gemini Planet Imager View of the HD 32297 Debris Disk , 2020, The Astronomical Journal.

[8]  I. Pascucci,et al.  New Millimeter CO Observations of the Gas-rich Debris Disks 49 Cet and HD 32297 , 2019, The Astrophysical Journal.

[9]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[10]  M. Wyatt,et al.  A statistically significant lack of debris discs in medium separation binary systems , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  E. Nesvold,et al.  Multiple Rings of Millimeter Dust Emission in the HD 15115 Debris Disk , 2019, The Astrophysical Journal.

[12]  J. Milli,et al.  Kuiper Belt–like Hot and Cold Populations of Planetesimal Inclinations in the β Pictoris Belt Revealed by ALMA , 2019, The Astronomical Journal.

[13]  D. Wilner,et al.  ALMA Detection of Extended Millimeter Halos in the HD 32297 and HD 61005 Debris Disks , 2018, The Astrophysical Journal.

[14]  Quentin Kral,et al.  Imaging [CI] around HD 131835: reinterpreting young debris discs with protoplanetary disc levels of CO gas as shielded secondary discs , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  A. Boccaletti,et al.  Comprehensive Analysis of HD 105, A Young Solar System Analog , 2018, The Astrophysical Journal.

[16]  M. Booth,et al.  Self-stirring of debris discs by planetesimals formed by pebble concentration , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  J. Carpenter,et al.  A gap in the planetesimal disc around HD 107146 and asymmetric warm dust emission revealed by ALMA , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[19]  G. Duchêne,et al.  Analysis of the Herschel DEBRIS Sun-like star sample , 2018, 1803.00072.

[20]  B. Matthews,et al.  Resolved Millimeter Observations of the HR 8799 Debris Disk , 2018, 1803.00054.

[21]  B. Matthews,et al.  Debris Disks: Structure, Composition, and Variability , 2018, Annual Review of Astronomy and Astrophysics.

[22]  A. Robin,et al.  BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc , 2018, 1801.09051.

[23]  D. Wilner,et al.  ALMA observations of the narrow HR 4796A debris ring , 2018, 1801.05429.

[24]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[25]  I. Song,et al.  Bayesian assessment of moving group membership: importance of models and prior knowledge , 2018, 1801.02133.

[26]  Steve Ertel,et al.  ALMA 1.3 mm Map of the HD 95086 System , 2017, 1709.10129.

[27]  T. Henning,et al.  Molecular Gas in Debris Disks around Young A-type Stars , 2017, 1709.08414.

[28]  S. Serjeant,et al.  SONS: The JCMT legacy survey of debris discs in the submillimetre , 2017, 1706.01218.

[29]  G. Rieke,et al.  A Complete ALMA Map of the Fomalhaut Debris Disk , 2017, 1705.05867.

[30]  J. Graham,et al.  Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets , 2017, 1705.05868.

[31]  J. Augereau,et al.  The Northern arc of ε Eridani’s Debris Ring as seen by ALMA , 2017, 1705.01560.

[32]  K. Flaherty,et al.  Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti , 2017, 1704.01972.

[33]  B. Matthews,et al.  New constraints on the millimetre emission of six debris discs , 2017, 1703.09388.

[34]  D. Lommen,et al.  Radio monitoring of protoplanetary discs , 2017, 1701.02049.

[35]  B. Matthews,et al.  ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M ⊕ planets? , 2016, 1611.01168.

[36]  J. Augereau,et al.  Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations , 2016, 1609.06718.

[37]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[38]  B. Matthews,et al.  Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup , 2016, 1607.03695.

[39]  T. Henning,et al.  NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS , 2016, 1606.09179.

[40]  K. Flaherty,et al.  DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA , 2016, 1606.07068.

[41]  A. Roberge,et al.  Exocometary gas in the HD 181327 debris ring , 2016, 1605.05331.

[42]  D. Wilner,et al.  CONSTRAINTS ON PLANETESIMAL COLLISION MODELS IN DEBRIS DISKS , 2016, 1603.05644.

[43]  Mamadou N'Diaye,et al.  FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377 , 2015, 1512.02220.

[44]  J. Carpenter,et al.  RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2015, 1510.08890.

[45]  T. Henning,et al.  DISCOVERY OF MOLECULAR GAS AROUND HD 131835 IN AN APEX MOLECULAR LINE SURVEY OF BRIGHT DEBRIS DISKS , 2015, 1510.03766.

[46]  J. Blommaert,et al.  THE AU MIC DEBRIS DISK: FAR-INFRARED AND SUBMILLIMETER RESOLVED IMAGING , 2015, 1509.06415.

[47]  A. Krivov,et al.  The dust grain size–stellar luminosity trend in debris discs , 2015, 1509.04032.

[48]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[49]  S. Wolf,et al.  Collisional modelling of the AU Microscopii debris disc , 2015, 1506.04564.

[50]  E. Paunzen A new catalogue of Stroemgren-Crawford uvbybeta photometry , 2015, 1506.04568.

[51]  J. Maldonado,et al.  DOES THE PRESENCE OF PLANETS AFFECT THE FREQUENCY AND PROPERTIES OF EXTRASOLAR KUIPER BELTS? RESULTS FROM THE HERSCHEL DEBRIS AND DUNES SURVEYS , 2015, 1501.03813.

[52]  M. Wyatt,et al.  Five steps in the evolution from protoplanetary to debris disk , 2014, 1412.5598.

[53]  M. Wyatt,et al.  Do two-temperature debris discs have multiple belts? , 2014, 1408.4116.

[54]  G. Bryden,et al.  DISK RADII AND GRAIN SIZES IN HERSCHEL-RESOLVED DEBRIS DISKS , 2014, 1407.4579.

[55]  D. James,et al.  Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life , 2014, 1406.7353.

[56]  A. Lagrange,et al.  Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk , 2014, Science.

[57]  I. Song,et al.  COPIOUS AMOUNTS OF HOT AND COLD DUST ORBITING THE MAIN SEQUENCE A-TYPE STARS HD 131488 AND HD 121191 , 2013, 1308.2753.

[58]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[59]  Jonathan P. Williams,et al.  RESOLVING THE MOTH AT MILLIMETER WAVELENGTHS , 2013, 1307.3560.

[60]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[61]  I. Ribas,et al.  DUst around NEarby Stars. The survey observational results , 2013, 1305.0155.

[62]  J. Graham,et al.  MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK , 2012, 1211.5148.

[63]  Inseok Song,et al.  A 40 Myr OLD GASEOUS CIRCUMSTELLAR DISK AT 49 CETI: MASSIVE CO-RICH COMET CLOUDS AT YOUNG A-TYPE STARS , 2012, 1207.1747.

[64]  D. Wilner,et al.  Grain growth signatures in the protoplanetary discs of Chamaeleon and Lupus , 2012, 1207.0260.

[65]  H. Jang-Condell,et al.  KECK/NIRC2 IMAGING OF THE WARPED, ASYMMETRIC DEBRIS DISK AROUND HD 32297 , 2012, 1206.4688.

[66]  L. Testi,et al.  Fomalhaut debris disk emission at 7 millimeters: constraints on the collisional models of planetesimals , 2012, 1201.3383.

[67]  Mark J. Pecaut,et al.  A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION , 2011, 1112.1695.

[68]  H. Schlichting,et al.  SELF-CONSISTENT SIZE AND VELOCITY DISTRIBUTIONS OF COLLISIONAL CASCADES , 2011, 1111.0667.

[69]  Bjorn Emonts,et al.  The Australia Telescope Compact Array Broad-band Backend: description and first results★: The Compact Array Broad-band Backend (CABB) , 2011 .

[70]  D. Homeier,et al.  Stellar to Substellar Model Atmospheres , 2011, Proceedings of the International Astronomical Union.

[71]  M. Ireland,et al.  Multidimensional Bayesian membership analysis of the Sco OB2 moving group , 2011, 1106.2857.

[72]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[73]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[74]  A. Krivov,et al.  Debris disks: seeing dust, thinking of planetesimals and planets , 2010, 1003.5229.

[75]  M. Kuchner,et al.  INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK , 2009, 0908.4368.

[76]  Cambridge,et al.  Debris disc stirring by secular perturbations from giant planets , 2009, 0907.1389.

[77]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[78]  Dan M. Watson,et al.  SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS , 2009, 0906.3744.

[79]  Germano R. Quast,et al.  Young Nearby Loose Associations , 2008, 0808.3362.

[80]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[81]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[82]  M. Fridlund,et al.  q1 Eridani: a solar-type star with a planet and a dust belt , 2008, 0803.1294.

[83]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[84]  E. F. Dishoeck,et al.  Investigating grain growth in disks around southern T Tauri stars at millimetre wavelengths , 2006, astro-ph/0610667.

[85]  M. Sterzik,et al.  Search for associations containing young stars (SACY). I. Sample and searching method , 2006, astro-ph/0609258.

[86]  P. Kalas First Optical Images of Circumstellar Dust Surrounding the Debris Disk Candidate HD 32297 , 2005, astro-ph/0511244.

[87]  G. Schneider,et al.  Discovery of a Nearly Edge-on Disk around HD 32297 , 2005, astro-ph/0507355.

[88]  S. Wolf,et al.  Mie scattering by ensembles of particles with very large size parameters , 2004, Comput. Phys. Commun..

[89]  R. Sari,et al.  Shaping the Kuiper belt size distribution by shattering large but strengthless bodies , 2004, astro-ph/0402138.

[90]  Wayne S. Holland,et al.  Submillimeter Observations of an Asymmetric Dust Disk around Fomalhaut , 2003 .

[91]  S. Kenyon,et al.  Dusty Rings: Signposts of Recent Planet Formation , 2002, astro-ph/0208155.

[92]  James Liebert,et al.  Post-T Tauri Stars in the Nearest OB Association , 2002, astro-ph/0205417.

[93]  S. Grenier,et al.  Search for reference A0 dwarf stars: Masses and luminosities revisited with HIPPARCOS parallaxes , 1999 .

[94]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[95]  P. Barber,et al.  Absorption and scattering of light by small particles , 1984 .

[96]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[97]  A. Schuster On the absorption and scattering of light , 1920 .

[98]  S. Wolf,et al.  Herschel : the first science highlights Special feature L etter to the E ditor Resolving the cold debris disc around a planet-hosting star PACS photometric imaging observations of q 1 Eridani ( HD 10647 , HR 506 ) , 2010 .

[99]  B. Draine submitted to The Astrophysical Journal On the Submillimeter Opacity of Protoplanetary Disks , 2005 .

[100]  Nancy Houk,et al.  Michigan catalogue of two-dimensional spectral types for the HD stars , 1975 .