Shannon Entropic Entanglement Criterion in the Simple Harmonic Oscillator

We apply the Walborn [Walborn S P, Taketani B G, Salles A, Toscano F and de Matos Filho R L 2009 Entropic Entanglement Criteria for Continuous Variables Phys. Rev. Lett. 103 160505] Shannon Entropic Entanglement Criterion (SEEC), to simple harmonic oscillators, a system typically discussed in undergraduate quantum mechanics courses. In particular, we investigate the entanglement of a system of coupled harmonic oscillators. A simple form of entanglement criterion in terms of their interaction is found. It is shown that a pair of interacting ground state coupled oscillators are more likely to be entangled for weaker coupling strengths while coupled oscillators in excited states entangle at higher coupling strengths. Interacting oscillators are more likely to be entangled as their interaction increases.

[1]  A. Jellal,et al.  Entropies for Coupled Harmonic Oscillators and Temperature , 2019, 1902.07645.

[2]  G. Blado,et al.  Entropic Uncertainty Relations, Entanglement and Quantum Gravity Effects via the Generalised Uncertainty Principle , 2018, Asian Journal of Research and Reviews in Physics.

[3]  J. S. Dehesa,et al.  Exact Shannon entropies for the multidimensional harmonic states , 2018, Physica A: Statistical Mechanics and its Applications.

[4]  DaeKil Park,et al.  Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results , 2018, Quantum Information Processing.

[5]  D. Makarov Coupled harmonic oscillators and their quantum entanglement. , 2017, Physical review. E.

[6]  Michael Towrie,et al.  Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. , 2017, Nature chemistry.

[7]  D. V. Schroeder Entanglement isn't just for spin , 2017, 1703.10620.

[8]  Sibel Baskal,et al.  Entangled Harmonic Oscillators and Space-Time Entanglement , 2016, Symmetry.

[9]  Jhih-Yuan Kao,et al.  Quantum entanglement in coupled harmonic oscillator systems: from micro to macro , 2016 .

[10]  K. Nakagawa Entanglement entropies of coupled harmonic oscillators , 2016, 1601.03584.

[11]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[12]  Leonas Valkunas,et al.  Vibronic coherence in oxygenic photosynthesis. , 2014, Nature chemistry.

[13]  Vladimir I. Novoderezhkin,et al.  Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion , 2014, Nature Physics.

[14]  Jasper Knoester,et al.  Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. , 2014, Nature chemistry.

[15]  T. F. Demarie,et al.  Pedagogical introduction to the entropy of entanglement for Gaussian states , 2012, 1209.2748.

[16]  E. Andersson,et al.  Quantum entanglement of nanocantilevers , 2010, 1006.4036.

[17]  S. Walborn,et al.  Family of continuous-variable entanglement criteria using general entropy functions , 2010, 1005.1045.

[18]  David Zueco,et al.  Bringing entanglement to the high temperature limit. , 2010, Physical review letters.

[19]  S. Walborn,et al.  Entropic entanglement criteria for continuous variables. , 2009, Physical review letters.

[20]  WinterAndreas,et al.  Entanglement and separability of quantum harmonic oscillator systems at finite temperature , 2008 .

[21]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[22]  Andreas J. Winter,et al.  Entanglement and separability of quantum harmonic oscillator systems at finite temperature , 2007, Quantum Inf. Comput..

[23]  F. Fillaux Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues , 2005 .

[24]  Y. S. Kim,et al.  Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators , 2005, quant-ph/0502096.

[25]  A. Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2002, quant-ph/0212052.

[26]  J. Prauzner-Bechcicki LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002, quant-ph/0211114.

[27]  V. Majerník,et al.  Standard and entropic uncertainty relations of the finite well , 2002 .

[28]  V. Giovannetti,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2001, Physical review letters.

[29]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[30]  J. Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[31]  V. Majerník,et al.  The momentum entropy of the infinite potential well , 1999 .

[32]  F. Fillaux,et al.  Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the KHCO 3 crystal , 1999 .

[33]  V. Majerník,et al.  Entropic uncertainty relations for the infinite well , 1997 .

[34]  V. Majerník,et al.  Entropic uncertainty relations for a quantum oscillator , 1996 .

[35]  Marilyn E. Noz,et al.  O(3,3)‐like symmetries of coupled harmonic oscillators , 1995, quant-ph/9704005.

[36]  Marilyn E. Noz,et al.  Symmetries of two‐mode squeezed states , 1993 .

[37]  Oss,et al.  Model of n coupled anharmonic oscillators and applications to octahedral molecules. , 1991, Physical review letters.

[38]  Kim Observable gauge transformations in the parton picture. , 1989, Physical review letters.

[39]  I. Bialynicki-Birula,et al.  Entropic uncertainty relations , 1984 .

[40]  M. Plenio,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[41]  Young S. Kim,et al.  Illustrative Example of Feynman's Rest of the Universe , 1999 .

[42]  Young S. Kim,et al.  Covariant harmonic oscillators and coupled harmonic oscillators , 1995 .