Polar permutation graphs are polynomial-time recognisable

Polar graphs generalise bipartite graphs, cobipartite graphs, and split graphs, and they constitute a special type of matrix partitions. A graph is polar if its vertex set can be partitioned into two, such that one part induces a complete multipartite graph and the other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary graph is polar, is an NP-complete problem. Here, we show that for permutation graphs this problem can be solved in polynomial time. The result is surprising, as related problems like achromatic number and cochromatic number are NP-complete on permutation graphs. We give a polynomial-time algorithm for recognising graphs that are both permutation and polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.

[1]  A. A. Chernyak,et al.  About recognizing (a b) classes of polar graphs , 1986 .

[2]  Alastair Farrugia Vertex-Partitioning into Fixed Additive Induced-Hereditary Properties is NP-hard , 2004, Electron. J. Comb..

[3]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[4]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[5]  Jason I. Brown,et al.  On generalized graph colorings , 1987, J. Graph Theory.

[6]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[7]  Fedor V. Fomin,et al.  Approximating minimum cocolorings , 2002, Inf. Process. Lett..

[8]  Raffaele Mosca,et al.  Polar graphs and maximal independent sets , 2006, Discret. Math..

[9]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[10]  Jing Huang,et al.  A forbidden subgraph characterization of line-polar bipartite graphs , 2010, Discret. Appl. Math..

[11]  Dominique de Werra,et al.  Polar cographs , 2008, Discret. Appl. Math..

[12]  Regina Tyshkevich,et al.  Decomposition of graphs , 1985 .

[13]  Sulamita Klein,et al.  Complexity of graph partition problems , 1999, STOC '99.

[14]  Dominique de Werra,et al.  Polarity of chordal graphs , 2008, Discret. Appl. Math..

[15]  Pinar Heggernes,et al.  Polar Permutation Graphs , 2009, IWOCA.

[16]  Sulamita Klein,et al.  Partitioning chordal graphs into independent sets and cliques , 2004, Discret. Appl. Math..

[17]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[18]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[19]  Jing Huang,et al.  Recognizing line-polar bipartite graphs in time O(n) , 2010, Discret. Appl. Math..

[20]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[21]  Hans L. Bodlaender,et al.  Achromatic Number is NP-Complete for Cographs and Interval Graphs , 1989, Inf. Process. Lett..

[22]  Klaus W. Wagner,et al.  Monotonic Coverings of Finite Sets , 1984, J. Inf. Process. Cybern..

[23]  Peter L. Hammer,et al.  The splittance of a graph , 1981, Comb..

[24]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[25]  Dominique de Werra,et al.  Polar cographs , 2008, Discret. Appl. Math..

[26]  Juraj Bosák,et al.  Decompositions of Graphs , 1990 .

[27]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..