New Roles for the External Globus Pallidus in Basal Ganglia Circuits and Behavior

The development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing “indirect-pathway,” the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior. Here, we integrate recent studies using techniques, such as viral tracing, transgenic mice, electrophysiology, and behavioral approaches, to create a revised framework for understanding how the GPe relates to behavior in both health and disease.

[1]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[2]  K. F. Schroeder,et al.  Morphometric studies of the neuropathological changes in choreatic diseases , 1976, Journal of the Neurological Sciences.

[3]  L. Swanson,et al.  Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[5]  M. D. Crutcher,et al.  Primate globus pallidus and subthalamic nucleus: functional organization. , 1985, Journal of neurophysiology.

[6]  W. Nauta,et al.  Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway , 1985, The Journal of comparative neurology.

[7]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[8]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[9]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[10]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[11]  H. Groenewegen,et al.  The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. , 1990, Progress in brain research.

[12]  L. Tremblay,et al.  Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[13]  L. Tremblay,et al.  Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[14]  H. Kita,et al.  Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat , 1993, Brain Research.

[15]  R. Llinás,et al.  Electrophysiology of globus pallidus neurons in vitro. , 1994, Journal of neurophysiology.

[16]  A. Parent,et al.  Compartmental distribution of parvalbumin and calbindin D-28k in rat globus pallidus. , 1994, NeuroReport.

[17]  Dieter Jaeger,et al.  Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements , 1995, Brain Research.

[18]  H. Bergman,et al.  Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. , 1995, Journal of neurophysiology.

[19]  M. E. Anderson,et al.  Pallidal discharge related to the kinematics of reaching movements in two dimensions. , 1997, Journal of neurophysiology.

[20]  J. Deniau,et al.  Relationships between the Prefrontal Cortex and the Basal Ganglia in the Rat: Physiology of the Corticosubthalamic Circuits , 1998, The Journal of Neuroscience.

[21]  J. Bolam,et al.  Selective Innervation of Neostriatal Interneurons by a Subclass of Neuron in the Globus Pallidus of the Rat , 1998, The Journal of Neuroscience.

[22]  A. Parent,et al.  Distribution of calbindin D-28k and parvalbumin neurons and fibers in the rat basal ganglia , 1998, Brain Research Bulletin.

[23]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[24]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[25]  J. Marshall,et al.  Population characteristics of preproenkephalin mRNA-containing neurons in the globus pallidus of the rat , 1999, Neuroscience Letters.

[26]  P. Lavallée,et al.  Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. , 2000, The Journal of comparative neurology.

[27]  G Chouvet,et al.  Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat , 2000, The European journal of neuroscience.

[28]  J. Bolam,et al.  Synaptic organisation of the basal ganglia , 2000, Journal of anatomy.

[29]  K. Sato,et al.  The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system , 2001, Neuroscience.

[30]  F. Murakami,et al.  Excitatory postsynaptic potentials trigger a plateau potential in rat subthalamic neurons at hyperpolarized states. , 2001, Journal of neurophysiology.

[31]  J. Bolam,et al.  Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network , 2001, Neuroscience.

[32]  T. Kita,et al.  Number, origins, and chemical types of rat pallidostriatal projection neurons , 2001, The Journal of comparative neurology.

[33]  Charles J. Wilson,et al.  Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. , 2002, Journal of neurophysiology.

[34]  J. Marshall,et al.  Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus , 2002, Neuroscience.

[35]  Steven W. Johnson,et al.  Excitatory effects of dopamine on subthalamic nucleus neurons: in vitro study of rats pretreated with 6-hydroxydopamine and levodopa , 2002, Brain Research.

[36]  Charles J. Wilson,et al.  Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network , 2002, Trends in Neurosciences.

[37]  Charles J. Wilson,et al.  Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels, through their Selective Coupling to Voltage-Gated Calcium Channels, Are Critical Determinants of the Precision, Pace, and Pattern of Action Potential Generation in Rat Subthalamic Nucleus Neurons In Vitro , 2003, The Journal of Neuroscience.

[38]  P. Brown Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson's disease , 2003, Movement disorders : official journal of the Movement Disorder Society.

[39]  S. Totterdell,et al.  Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's disease , 2004, Experimental Neurology.

[40]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[41]  L. Tremblay,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. , 2004, Brain : a journal of neurology.

[42]  Chantal François,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. , 2004, Brain : a journal of neurology.

[43]  M. Bevan,et al.  Globus Pallidus Neurons Dynamically Regulate the Activity Pattern of Subthalamic Nucleus Neurons through the Frequency-Dependent Activation of Postsynaptic GABAA and GABAB Receptors , 2005, The Journal of Neuroscience.

[44]  J. Rothstein,et al.  Mechanisms of Disease: astrocytes in neurodegenerative disease , 2006, Nature Clinical Practice Neurology.

[45]  H. Kita Globus pallidus external segment. , 2007, Progress in brain research.

[46]  Michael M. Halassa,et al.  The tripartite synapse: roles for gliotransmission in health and disease. , 2007, Trends in molecular medicine.

[47]  P. Brown Abnormal oscillatory synchronisation in the motor system leads to impaired movement , 2007, Current Opinion in Neurobiology.

[48]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[49]  Christos Constantinidis,et al.  Synchronous oscillations and phase reorganization in the basal ganglia during akinesia induced by high‐dose haloperidol , 2007, The European journal of neuroscience.

[50]  S. Oliet,et al.  Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. , 2008, Physiological reviews.

[51]  Thomas Wichmann,et al.  Pathophysiology of Parkinsonism , 2008, Clinical Neurophysiology.

[52]  Jozsef Csicsvari,et al.  Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex , 2008, The Journal of Neuroscience.

[53]  J. Obeso,et al.  Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease , 2008, Movement disorders : official journal of the Movement Disorder Society.

[54]  Peter Brown,et al.  Parkinsonian Beta Oscillations in the External Globus Pallidus and Their Relationship with Subthalamic Nucleus Activity , 2008, The Journal of Neuroscience.

[55]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[56]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[57]  Jérôme Baufreton,et al.  Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. , 2009, Journal of neurophysiology.

[58]  Jean-Michel Deniau,et al.  Chronic but not acute dopaminergic transmission interruption promotes a progressive increase in cortical beta frequency synchronization: relationships to vigilance state and akinesia. , 2009, Cerebral cortex.

[59]  D. Surmeier,et al.  Selective Participation of Somatodendritic HCN Channels in Inhibitory But Not Excitatory Synaptic Integration in Neurons of the Subthalamic Nucleus , 2010, The Journal of Neuroscience.

[60]  J. Rubenstein,et al.  The Progenitor Zone of the Ventral Medial Ganglionic Eminence Requires Nkx2-1 to Generate Most of the Globus Pallidus But Few Neocortical Interneurons , 2010, The Journal of Neuroscience.

[61]  Oscar Marín,et al.  Origin and Molecular Specification of Globus Pallidus Neurons , 2010, The Journal of Neuroscience.

[62]  Alexander B. Wiltschko,et al.  Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution , 2010, Neuron.

[63]  L. Roux,et al.  Over Astroglial Networks: a Step Further in Neuroglial and Gliovascular Interactions , 2022 .

[64]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[65]  T. Wichmann,et al.  Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys , 2010, Experimental Neurology.

[66]  Pavel Osten,et al.  HCN Channelopathy in External Globus Pallidus Neurons in Models of Parkinson’s Disease , 2010, Nature Neuroscience.

[67]  Hitoshi Kita,et al.  Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia , 2011, The European journal of neuroscience.

[68]  Raymond J. Dolan,et al.  Alterations in Brain Connectivity Underlying Beta Oscillations in Parkinsonism , 2011, PLoS Comput. Biol..

[69]  Steven Finkbeiner,et al.  Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine , 2011, Neuron.

[70]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[71]  I. Bar-Gad,et al.  Globus Pallidus External Segment Neuron Classification in Freely Moving Rats: A Comparison to Primates , 2012, PloS one.

[72]  D James Surmeier,et al.  Proliferation of External Globus Pallidus-Subthalamic Nucleus Synapses following Degeneration of Midbrain Dopamine Neurons , 2012, The Journal of Neuroscience.

[73]  Jerrold L. Vitek,et al.  External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network , 2012, Experimental Neurology.

[74]  KouichiC . Nakamura,et al.  Dichotomous Organization of the External Globus Pallidus , 2012, Neuron.

[75]  M. Nedergaard,et al.  Artifact versus reality—How astrocytes contribute to synaptic events , 2012, Glia.

[76]  Daniel K. Leventhal,et al.  Basal Ganglia Beta Oscillations Accompany Cue Utilization , 2012, Neuron.

[77]  K. Miller,et al.  Subthalamic Nucleus Neurons Are Synchronized to Primary Motor Cortex Local Field Potentials in Parkinson's Disease , 2013, The Journal of Neuroscience.

[78]  Charles J. Wilson,et al.  Active decorrelation in the basal ganglia , 2013, Neuroscience.

[79]  Daniel K. Leventhal,et al.  Canceling actions involves a race between basal ganglia pathways , 2013, Nature Neuroscience.

[80]  M. Bevan,et al.  Short-term Depression of External Globus Pallidus-Subthalamic Nucleus Synaptic Transmission and Implications for Patterning Subthalamic Activity , 2013, The Journal of Neuroscience.

[81]  A. Gittis,et al.  Transgenic Mouse Lines Subdivide External Segment of the Globus Pallidus (GPe) Neurons and Reveal Distinct GPe Output Pathways , 2014, The Journal of Neuroscience.

[82]  Dale E. Zand,et al.  Parallel Organization , 2014 .

[83]  Daniel K. Leventhal,et al.  Dissociable effects of dopamine on learning and performance within sensorimotor striatum. , 2014, Basal ganglia.

[84]  Astrocytes go awry in Huntington's disease , 2014, Nature Neuroscience.

[85]  S. Oliet,et al.  Gliotransmitters Travel in Time and Space , 2014, Neuron.

[86]  Yan Ao,et al.  Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice , 2014, Nature Neuroscience.