Lyapunov quantities and limit cycles of two-dimensional dynamical systems. Analytical methods and symbolic computation

In the present work the methods of computation of Lyapunov quantities and localization of limit cycles are demonstrated. These methods are applied to investigation of quadratic systems with small and large limit cycles. The expressions for the first five Lyapunov quantities for general Lienard system are obtained. By the transformation of quadratic system to Lienard system and the method of asymptotical integration, quadratic systems with large limit cycles are investigated. The domain of parameters of quadratic systems, for which four limit cycles can be obtained, is determined.

[1]  Nikolay V. Kuznetsov,et al.  Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems , 2008 .

[2]  N. G. Lloyd,et al.  New Directions in Dynamical Systems: Limit Cycles of Polynomial Systems – Some Recent Developments , 1988 .

[3]  Nikolay V. Kuznetsov,et al.  Cycles of two-dimensional systems: Computer calculations, proofs, and experiments , 2008 .

[4]  R. Roussarie,et al.  Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem , 1998 .

[5]  Pei Yu,et al.  COMPUTATION OF NORMAL FORMS VIA A PERTURBATION TECHNIQUE , 1998 .

[6]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[7]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[8]  Víctor Mañosa,et al.  An Explicit Expression of the First Liapunov and Period Constants with Applications , 1997 .

[9]  Vladimir I. Arnold,et al.  Ordinary differential equations and smooth dynamical systems , 1997 .

[10]  T. R. Blows,et al.  Bifurcation of Limit Cycles from Centers and Separatrix Cycles of Planar Analytic Systems , 1994, SIAM Rev..

[11]  Dongming Wang,et al.  Differential equations with symbolic computation , 2005 .

[12]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[13]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[14]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[15]  Gennady A. Leonov On the problem of estimation of the number of cycles in two-dimensional quadratic systems from the viewpoint of nonlinear mechanics , 1998 .

[16]  Songling Shi,et al.  A CONCRETE EXAMPLE OF THE EXISTENCE OF FOUR LIMIT CYCLES FOR PLANE QUADRATIC SYSTEMS , 1980 .

[17]  Russian Federation,et al.  COMPUTATION OF LYAPUNOV QUANTITIES , 2008 .

[18]  Christiane Rousseau,et al.  Bifurcation at Infinity in Polynomial Vector Fields , 1993 .

[19]  Joan C. Artés,et al.  Quadratic vector fields with a weak focus of third order , 1997 .

[20]  Gennady A. Leonov,et al.  Evaluation of the first five Lyapunov exponents for the Liénard system , 2009 .

[21]  Jaume Llibre,et al.  The Geometry of Quadratic Differential Systems with a Weak Focus of Second Order , 2006, Int. J. Bifurc. Chaos.

[22]  N. G. Lloyd,et al.  Five limit cycles for a simple cubic system , 1997 .

[23]  A. Guillamón,et al.  An Analytic-Numerical Method for Computation of the Liapunov and Period Constants Derived from Their Algebraic Structure , 1999 .

[24]  T. Bedford,et al.  New directions in dynamical systems , 2008 .

[25]  Gennady A. Leonov,et al.  Limit cycles of the lienard equation with discontinuous coefficients , 2009 .

[26]  Marco Sabatini,et al.  A survey of isochronous centers , 1999 .

[27]  J. Giné On some open problems in planar differential systems and Hilbert’s 16th problem , 2007 .

[28]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[29]  Guanrong Chen,et al.  Computation of focus values with applications , 2008 .

[30]  Stephen Lynch,et al.  Symbolic Computation of Lyapunov Quantities and the Second Part of Hilbert’s Sixteenth Problem , 2005 .

[31]  Colin Christopher,et al.  Limit Cycles of Differential Equations , 2007 .

[32]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[33]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .

[34]  Li Xin Cheng,et al.  On Hereditarily Indecomposable Banach Spaces , 2006 .