TDDFT Study of the Optical Absorption Spectra of Bare Gold Clusters

Time-dependent density functional theory (TDDFT) was used to calculate the optical absorption spectra of gold clusters of 20–171 atoms. The spectra for the smallest clusters agree with previous results, and the spectra for the largest clusters show features consistent with classical Mie theory. The systematic exploration of particles of sizes within these two extremes has allowed the trends linking optical absorption spectra and particle size and symmetry to be identified. A transition from molecular-like spectra to a more classical response is observed.

[1]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[2]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[3]  C. Aikens,et al.  Modelling small gold and silver nanoparticles with electronic structure methods , 2012 .

[4]  Xiaojing Wang,et al.  Electronic structures and spectroscopic properties of dimers Cu2, Ag2, and Au2 calculated by density functional theory , 2002 .

[5]  K. Balasubramanian,et al.  Infrared vibronic absorption spectrum and spin–orbit calculations of the upper spin–orbit component of the Au3 ground state , 2002 .

[6]  Á. Rubio,et al.  The role of dimensionality on the quenching of spin-orbit effects in the optics of gold nanostructures. , 2008, The Journal of chemical physics.

[7]  C. Aikens,et al.  Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra , 2012 .

[8]  M. Moseler,et al.  A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension , 2011 .

[9]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[10]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[11]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[12]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[13]  T. Kondow,et al.  Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant , 2001 .

[14]  C. Mottet,et al.  Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure , 2011 .

[15]  M. Broyer,et al.  Alloying Effects on the Optical Properties of Ag–Au Nanoclusters from TDDFT Calculations , 2011 .

[16]  S. Botti Applications of Time-Dependent Density Functional Theory , 2004 .

[17]  C. Mottet,et al.  Effect of Alloying on the Optical Properties of Ag–Au Nanoparticles , 2013 .

[18]  J. Watts,et al.  Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters: DFT/TDDFT studies. , 2010, The journal of physical chemistry. A.

[19]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[20]  Jinlan Wang,et al.  Structural, Electronic, and Optical Properties of Noble Metal Clusters from First Principles , 2006 .

[21]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[22]  Amanda S Barnard,et al.  Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[24]  Jinlan Wang,et al.  Static polarizabilities and optical absorption spectra of gold clusters ( Au n , n = 2 – 14 and 20) from first principles , 2007 .

[25]  M. Broyer,et al.  Optical Properties of Au Nanoclusters from TD-DFT Calculations , 2011 .

[26]  Remco W. A. Havenith,et al.  Gold Nanowires: A Time-Dependent Density Functional Assessment of Plasmonic Behavior , 2013 .

[27]  G. Schatz,et al.  From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Agn(n= 10, 20, 35, 56, 84, 120) Tetrahedral Clusters , 2008 .

[28]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[29]  M. Broyer,et al.  Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory , 2006 .

[30]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[31]  Fernando Nogueira,et al.  A Tutorial on Density Functional Theory , 2003 .

[32]  A. Datta,et al.  Odd–even oscillations in structural and optical properties of gold clusters , 2010 .

[33]  Notker Rösch,et al.  From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 , 1997 .

[34]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[35]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[36]  J. Martins,et al.  A straightforward method for generating soft transferable pseudopotentials , 1990 .

[37]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[38]  P. Bagus,et al.  Electronic structure studies of six-atom gold clusters , 2001 .

[39]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[40]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[41]  F. Rabilloud UV-visible absorption spectra of metallic clusters from TDDFT calculations , 2013 .

[42]  C. Aikens,et al.  Effects of core distances, solvent, ligand, and level of theory on the TDDFT optical absorption spectrum of the thiolate-protected Au(25) nanoparticle. , 2009, The journal of physical chemistry. A.

[43]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[44]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[45]  In search of a structural model for a thiolate-protected Au38 cluster , 2008, 0804.0018.

[46]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  R. Burgess,et al.  TDDFT Study of the Optical Absorption Spectra of Bare and Coated Au55 and Au69 Clusters , 2011 .

[49]  Masayuki Nogami,et al.  One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties , 2006 .

[50]  Jinlan Wang,et al.  Dipole polarizabilities of medium-sized gold clusters , 2006 .

[51]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[52]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[53]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[54]  F. Rabilloud Assessment of the performance of long-range-corrected density functionals for calculating the absorption spectra of silver clusters. , 2013, The journal of physical chemistry. A.

[55]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .