CMPTF: Contextual Modeling Probabilistic Tensor Factorization for recommender systems

Abstract Contextual information has been proven to be valuable factor for building personalized Recommender Systems. However, most existing solutions based on probabilistic matrix factorization in recommender systems do not provide a straightforward way of integrating information such as ratings, social relationships, item contents and contexts into one model simultaneously. In this paper, we deem the given data as an User-Item-Context-Rating tensor and introduce a high dimensional method of Collaborative Filtering named probabilistic tensor factorization (PTF) which is a generalization of probabilistic matrix factorization. Then, we further extend PTF to a new model named Contextual Modeling Probabilistic Tensor Factorization (CMPTF) which systematically integrates topic modeling, social relationships and contexts in contextual modeling manner to further improve the quality of recommendation. Comprehensive comparative experiments conducted using real-world datasets demonstrate the superiority of our approach.

[1]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[2]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[3]  Xi Chen,et al.  Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization , 2010, SDM.

[4]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[5]  Zhen Lin,et al.  Context-Aware Collaborative Topic Regression with Social Matrix Factorization for Recommender Systems , 2014, AAAI.

[6]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[7]  Tamara G. Kolda,et al.  All-at-once Optimization for Coupled Matrix and Tensor Factorizations , 2011, ArXiv.

[8]  Fei Wang,et al.  Scalable Recommendation with Social Contextual Information , 2014, IEEE Transactions on Knowledge and Data Engineering.

[9]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  Thomas Hofmann,et al.  Unifying collaborative and content-based filtering , 2004, ICML.

[12]  Yan Liu,et al.  Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems , 2012, ICML.

[13]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[14]  AdomaviciusGediminas,et al.  Toward the Next Generation of Recommender Systems , 2005 .

[15]  Kenta Oku,et al.  Context-Aware SVM for Context-Dependent Information Recommendation , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[16]  Alexander J. Smola,et al.  CoBaFi: collaborative bayesian filtering , 2014, WWW.

[17]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[18]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[19]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[20]  Xin Liu Towards Context-Aware Social Recommendation via Trust Networks , 2013, WISE.

[21]  Jimeng Sun,et al.  MetaFac: community discovery via relational hypergraph factorization , 2009, KDD.

[22]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[23]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[24]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[25]  Qiang Yang,et al.  Scalable collaborative filtering using cluster-based smoothing , 2005, SIGIR '05.

[26]  Karl Aberer,et al.  SoCo: a social network aided context-aware recommender system , 2013, WWW.

[27]  Michael R. Lyu,et al.  SoRec: social recommendation using probabilistic matrix factorization , 2008, CIKM '08.

[28]  Martin Ester,et al.  TrustWalker: a random walk model for combining trust-based and item-based recommendation , 2009, KDD.

[29]  Fei Wang,et al.  FEMA: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery , 2014, KDD.

[30]  Chao Liu,et al.  Recommender systems with social regularization , 2011, WSDM '11.

[31]  Hong Joo Lee,et al.  Use of social network information to enhance collaborative filtering performance , 2010, Expert Syst. Appl..

[32]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[33]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[34]  Fei Wang,et al.  Social contextual recommendation , 2012, CIKM.

[35]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[36]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[37]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[38]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[39]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[40]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..