Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite.

Multiferroic composite structures, i.e., composites of magnetostrictive and piezoelectric materials, can be envisioned to achieve the goal of strong room-temperature ME coupling for real practical device applications. Magnetic materials with high magnetostriction, high Néel temperature (TN), high resistivity and large magnetization are required to observe high ME coupling in composite structures. In continuation of our investigations on suitable magnetic candidates for multiferroic composite structures, we have studied the crystal structure, dielectric, transport, and magnetic properties of Co0.65Zn0.35Fe2O4 (CZFO). Rietveld refinement of X-ray diffraction patterns confirms the phase purity with a cubic crystal structure with the (Fd3[combining macron]m) space group; however, we have found a surprisingly large magneto-dielectric anomaly at the Néel temperature, unexpected for a cubic structure. The presence of mixed valences of Fe2+/Fe3+ cations is probed by X-ray photoelectron spectroscopy (XPS), which supports the catonic ordering-mediated large dielectric response. Large dielectric permittivity dispersion with a broad anomaly is observed in the vicinity of the magnetic phase transition temperature (TN) of CZFO suggesting a strong correlation between dielectric and magnetic properties. The evidence of strong spin-polaron coupling has been established from temperature dependent dielectric, ac conductivity and magnetization studies. The ferrimagnetic-paramagnetic phase transition of CZFO has been found at ∼640 K, which is well above room temperature. CZFO exhibits low loss tangent, a high dielectric constant, large magnetization with soft magnetic behavior and magnetodielectric coupling above room temperature, elucidating the possible potential candidates for multiferroic composite structures as well as for multifunctional and spintronics device applications.

[1]  M. Tomar,et al.  Effect of insertion of low leakage polar layer on leakage current and multiferroic properties of BiFeO3/BaTiO3 multilayer structure , 2016 .

[2]  Venkata Sreenivas Puli,et al.  Studies of Phase Transitions and Magnetoelectric Coupling in PFN-CZFO Multiferroic Composites , 2016 .

[3]  M. Tomar,et al.  Stress induced enhanced polarization in multilayer BiFeO3/BaTiO3 structure with improved energy storage properties , 2015 .

[4]  V. Reddy,et al.  Tuning magnetization, blocking temperature, cation distribution of nanosized Co0.2Zn0.8Fe2O4 by mechanical activation , 2015 .

[5]  R. Choudhary,et al.  Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics , 2015 .

[6]  Y. Zhai,et al.  Magnetic behaviors of Co1−xZnxFe2O4 nano-particles , 2015 .

[7]  Venkata Sreenivas Puli,et al.  Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4 , 2014 .

[8]  Venkata Sreenivas Puli,et al.  Studies on magnetoelectric coupling in PFN-NZFO composite at room temperature , 2014 .

[9]  Venkata Sreenivas Puli,et al.  Room temperature multiferroic properties of Pb(Fe0.5Nb0.5)O3–Co0.65Zn0.35Fe2O4 composites , 2013 .

[10]  G. Han,et al.  Colossal Permittivity and Variable-Range-Hopping Conduction of Polarons in Ni0.5Zn0.5Fe2O4 Ceramic , 2013 .

[11]  X. Tang,et al.  Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe2O4 ceramics , 2013 .

[12]  D. Jiles,et al.  Temperature dependence of the structural, magnetic, and magnetostrictive properties of zinc-substituted cobalt ferrite , 2013 .

[13]  Venkata Sreenivas Puli,et al.  Investigations on electrical and magnetic properties of multiferroic [(1−x)Pb(Fe0.5Nb0.5)O3−xNi0.65Zn0.35Fe2O4] composites , 2013 .

[14]  A. Franco,et al.  Effect of the Zn content in the magnetic properties of Co1−xZnxFe2O4 mixed ferrites , 2013 .

[15]  N. Nemes,et al.  Magnetoimpedance spectroscopy of epitaxial multiferroic thin films , 2012 .

[16]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[17]  D. Pradhan,et al.  Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3 , 2011 .

[18]  Ravi K. Kumar,et al.  Micro‐Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation , 2011 .

[19]  Xingui Tang,et al.  Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process , 2011 .

[20]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[21]  T. K. Nath,et al.  MICROSTRUCTURAL, MAGNETIC, AND ELECTRICAL PROPERTIES OF Co–Zn FERRITES NANOPARTICLES PREPARED BY SOL–GEL METHOD , 2011 .

[22]  Sanjay Kumar,et al.  Spin glasslike behavior and magnetic enhancement in nanosized Ni–Zn ferrite system , 2010 .

[23]  W. Chen,et al.  Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films , 2010 .

[24]  J. Slonczewski Initiation of spin-transfer torque by thermal transport from magnons , 2010 .

[25]  Ce-Wen Nan,et al.  Multiferroic magnetoelectric composite nanostructures , 2010 .

[26]  R. Seshadri,et al.  Magnetic ordering and magnetodielectric phenomena in CoSeO4 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  C. Ahn,et al.  Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O{3}/La{0.8}Sr{0.2}MnO{3} Multiferroic heterostructures. , 2010, Physical review letters.

[28]  R. Cava,et al.  Magnetodielectric effects at magnetic ordering transitions , 2009 .

[29]  Y. Yoshida,et al.  Evidence for polaron conduction in nanostructured manganese ferrite , 2008 .

[30]  S. B. Majumder,et al.  Impedance spectroscopy of multiferroic Pb Zr x Ti 1 − x O 3 ∕ Co Fe 2 O 4 layered thin films , 2008 .

[31]  G. P. Das,et al.  Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory , 2007 .

[32]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[33]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[34]  O. P. Thakur,et al.  Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique , 2005 .

[35]  P. Lunkenheimer,et al.  Nonintrinsic origin of the colossal dielectric constants in Ca Cu 3 Ti 4 O 12 , 2004, cond-mat/0403119.

[36]  M. Sugimoto The Past, Present, and Future of Ferrites , 1999 .

[37]  C. Choy,et al.  Field-induced crossover from cluster-glass to ferromagnetic state in La0.7Sr0.3Mn0.7Co0.3O3 , 1999 .

[38]  P. Joy,et al.  The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems , 1998 .

[39]  P. Hagenmuller,et al.  Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15 , 1992 .

[40]  S. R. Elliott,et al.  A.c. conduction in amorphous chalcogenide and pnictide semiconductors , 1987 .

[41]  T. S. Rao,et al.  Magnetostriction of Ni‐Zn and Co‐Zn ferrites , 1985 .

[42]  T. Masumoto,et al.  Anomalous eddy current loss and amorphous magnetic materials with low core loss (invited) , 1981 .

[43]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[44]  A. Malkinson,et al.  Cyclic AMP-dependent protein kinases from normal and SV40-transformed 3T3 cells , 1976, Nature.

[45]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .