Semidefinite Relaxations for Best Rank-1 Tensor Approximations
暂无分享,去创建一个
Li Wang | Jiawang Nie | Jiawang Nie | Li Wang
[1] O. Taussky. Sums of Squares , 1970 .
[2] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[3] Olga Taussky-Todd. SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .
[4] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[5] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[6] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[7] Pablo A. Parrilo,et al. Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.
[8] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[9] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[10] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[11] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[12] Renato D. C. Monteiro,et al. Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .
[13] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[14] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[15] Pierre Comon,et al. Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.
[16] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[17] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[18] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[19] Chen Ling,et al. Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..
[20] Kim-Chuan Toh,et al. A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..
[21] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[22] Liqun Qi,et al. The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..
[23] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[24] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[25] Jiawang Nie. Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces , 2012 .
[26] Li Wang,et al. Regularization Methods for SDP Relaxations in Large-Scale Polynomial Optimization , 2009, SIAM J. Optim..
[27] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[28] Pierre Comon,et al. General tensor decomposition, moment matrices and applications , 2013, J. Symb. Comput..
[29] Zheng-Hai Huang,et al. Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..
[30] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[31] Luke Oeding,et al. Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..
[32] Paul Van Dooren,et al. Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors , 2013, SIAM J. Matrix Anal. Appl..
[33] Monique Laurent,et al. Semidefinite optimization , 2019, Graphs and Geometry.
[34] Jiawang Nie,et al. Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..
[35] A. Ivic. Sums of squares , 2020, An Introduction to 𝑞-analysis.