Light Dark Matter Search with Ionization Signals in XENON1T.

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4  keV_{ee}, we observe <1  event/(tonne day keV_{ee}), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m_{χ} within 3-6  GeV/c^{2}, DM-electron scattering for m_{χ}>30  MeV/c^{2}, and absorption of dark photons and axionlike particles for m_{χ} within 0.186-1  keV/c^{2}.

V. C. Antochi | J. Naganoma | Yuan Zhang | M. Decowski | G. Volta | L. Bellagamba | A. Colijn | S. Diglio | S. Kazama | L. Levinson | A. Manfredini | S. Schindler | D. Barge | D. Schulte | J. Pienaar | F. Marignetti | A. Depoian | W. Fulgione | A. Gallo Rosso | A. Kopec | R. Lang | R. Peres | J. Qin | C. Tunnell | H. Simgen | T. Berger | F. Toschi | F. Gao | G. Sartorelli | J. Ye | H. Qiu | M. Lindner | H. Landsman | M. Alfonsi | J. Cussonneau | C. Weinheimer | P. Perio | M. Messina | L. Baudis | A. Ferella | C. Macolino | J. Schreiner | M. Benabderrahmane | A. Brown | M. Iacovacci | M. Galloway | B. Riedel | L. Grandi | F. Lombardi | A. Kish | F. Arneodo | G. Bruno | A. Di Giovanni | Y. Wei | K. Ni | K. Ni | U. Oberlack | Z. Greene | J. Masbou | R. Itay | H. Wang | K. Miller | J. Lopes | J. Santos | G. Trinchero | E. Aprile | J. Aalbers | F. Agostini | F. Amaro | B. Bauermeister | P. Breur | E. Brown | S. Bruenner | R. Budnik | J. Cardoso | D. Cichon | D. Coderre | J. Conrad | P. de Perio | P. Di Gangi | G. Eurin | J. Fei | A. Fieguth | M. Garbini | C. Hasterok | E. Hogenbirk | J. Howlett | Q. Lin | S. Lindemann | T. Marrodán Undagoitia | K. Micheneau | A. Molinario | K. Mora | M. Murra | B. Pelssers | V. Pizzella | G. Plante | S. Reichard | N. Rupp | J. D. dos Santos | M. Scheibelhut | M. Schumann | L. Scotto Lavina | M. Selvi | P. Shagin | E. Shockley | M. Silva | D. Thers | M. Vargas | N. Upole | J. Wulf | Y. Zhang | T. Zhu | S. Mastroianni | C. Wittweg | T. Undagoitia | J. Palacio | L. Lavina | A. Rocchetti | A. G. Rosso | M. Kobayashi | D. Ramírez García | G. Koltman | L. Althueser | C. Capelli | P. Gangi | A. Giovanni | A. Elykov | P. Gaemers | F. Joerg | J. Mahlstedt | Y. Mosbacher | K. Odgers | R. Podviianiuk | C. Therreau | O. Wack | D. Wenz | E. Angelino | C. Hils | M. P. Decowski | E. L. Fune | D. R. García | N. Šarčević | J. Zopounidis | Jmf dos Santos | K. Morå | E. López Fune | T. M. Undagoitia | F. Gao | Masanori Kobayashi | R. Lang | M. Kobayashi | J. Lopes

[1]  J. Müller,et al.  Noble Element Simulation Technique , 2020 .

[2]  J. Xu,et al.  Measurement of the ionization yield from nuclear recoils in liquid xenon between 0.3 -- 6 keV with single-ionization-electron sensitivity , 2019, 1908.00518.

[3]  E. Brown,et al.  XENON1T dark matter data analysis: Signal reconstruction, calibration, and event selection , 2019, Physical Review D.

[4]  S. Mastroianni,et al.  The XENON1T data acquisition system , 2019, Journal of Instrumentation.

[5]  V. C. Antochi,et al.  XENON1T dark matter data analysis: Signal and background models and statistical inference , 2019, Physical Review D.

[6]  V. C. Antochi,et al.  Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. , 2019, Physical review letters.

[7]  V. C. Antochi,et al.  First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment. , 2018, Physical review letters.

[8]  S. Burdin,et al.  Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. , 2018, Physical review letters.

[9]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[10]  V. S. Lugovsky,et al.  Review of Particle Physics , 2018, Physical Review D.

[11]  B. Paul,et al.  Searches for electron interactions induced by new physics in the EDELWEISS-III germanium bolometers , 2018, Physical Review D.

[12]  J. Naganoma,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[13]  G. B. Suffritti,et al.  Low-Mass Dark Matter Search with the DarkSide-50 Experiment. , 2018, Physical review letters.

[14]  G. B. Suffritti,et al.  Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.

[15]  C. Dionisi,et al.  DarkSide-50 532-day dark matter search with low-radioactivity argon , 2018, Physical Review D.

[16]  M. Xiao,et al.  Constraining Dark Matter Models with a Light Mediator at the PandaX-II Experiment. , 2018, Physical review letters.

[17]  P. Sorensen,et al.  Two distinct components of the delayed single electron noise in liquid xenon emission detectors , 2017, 1711.07025.

[18]  R. Webb,et al.  Ultralow energy calibration of LUX detector using Xe127 electron capture , 2017, 1709.00800.

[19]  M. Xiao,et al.  Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.

[20]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[21]  M. Xiao,et al.  Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment. , 2017, Physical review letters.

[22]  L. Roszkowski,et al.  WIMP dark matter candidates and searches—current status and future prospects , 2017, Reports on progress in physics. Physical Society.

[23]  H. R. Harris,et al.  Low-mass dark matter search with CDMSlite , 2017, 1707.01632.

[24]  F. V. Massoli,et al.  First Dark Matter Search Results from the XENON1T Experiment. , 2017, Physical review letters.

[25]  R. F. Lang,et al.  Characterization of a deuterium–deuterium plasma fusion neutron generator , 2017, 1705.04741.

[26]  R. Webb,et al.  Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure. , 2017, Physical review letters.

[27]  R. Webb,et al.  First Searches for Axions and Axionlike Particles with the LUX Experiment. , 2017, Physical review letters.

[28]  K. J. Thomas,et al.  LUX-ZEPLIN (LZ) Technical Design Report , 2017, 1703.09144.

[29]  F. V. Massoli,et al.  Erratum: Low-mass dark matter search using ionization signals in XENON100 [Phys. Rev. D 94, 092001 (2016)] , 2017 .

[30]  R. Essig,et al.  New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon , 2017, 1703.00910.

[31]  S. Parlati,et al.  The XENON1T dark matter experiment , 2017, The European Physical Journal C.

[32]  F. V. Massoli,et al.  Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220 , 2016, 1611.03585.

[33]  F. V. Massoli,et al.  XENON100 dark matter results from a combination of 477 live days , 2016, 1609.06154.

[34]  L. Baudis,et al.  Qualification tests of the R11410-21 photomultiplier tubes for the XENON1T detector , 2016, 1609.01654.

[35]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[36]  Witherell,et al.  Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics , 2016, 1608.05381.

[37]  F. V. Massoli,et al.  Low-mass dark matter search using ionization signals in XENON100 , 2016, 1605.06262.

[38]  L. Rauch,et al.  Dark matter direct-detection experiments , 2015, 1509.08767.

[39]  M. Kaplinghat,et al.  Direct detection signatures of self-interacting dark matter with a light mediator , 2015, 1507.04007.

[40]  F. V. Massoli,et al.  Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment , 2015, The European Physical Journal C.

[41]  J. Pradler,et al.  Direct detection constraints on dark photon dark matter , 2014, 1412.8378.

[42]  F. V. Massoli,et al.  Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment , 2014, 1406.2374.

[43]  C. Winant,et al.  Erratum: Search for light dark matter in XENON10 data (Physical Review Letters (2011) 107 (051301)) , 2013 .

[44]  K. Arisaka,et al.  Expected sensitivity to galactic/solar axions and bosonic super-WIMPs based on the axio-electric effect in liquid xenon dark matter detectors , 2012, 1209.3810.

[45]  P. Sorensen,et al.  First direct detection limits on sub-GeV dark matter from XENON10. , 2012, Physical review letters.

[46]  R. Essig,et al.  Direct Detection of Sub-GeV Dark Matter , 2011, 1108.5383.

[47]  P. Panci,et al.  Long-Range Forces in Direct Dark Matter Searches , 2011, 1108.4661.

[48]  C. Winant,et al.  Search for light dark matter in XENON10 data. , 2011, Physical review letters.

[49]  Wick C. Haxton,et al.  SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM , 2011, 1104.1639.

[50]  P. Sorensen Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches , 2011, 1102.2865.

[51]  G. Drake,et al.  Erratum: Experimental Constraints on a Dark Matter Origin for the DAMA Annual Modulation Effect [Phys. Rev. Lett.PRLTAO0031-9007 101 , 251301 (2008)] , 2009 .

[52]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[53]  M. Pospelov,et al.  Bosonic super-WIMPs as keV-scale dark matter , 2008, 0807.3279.

[54]  G. Drake,et al.  Experimental constraints on a dark matter origin for the DAMA annual modulation effect. , 2008, Physical review letters.

[55]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[56]  E. Suchman,et al.  The American Soldier: Adjustment During Army Life. , 1949 .

[57]  P. Gangi First dark matter search results of the XENON1T experiment , 2018 .

[58]  J. Verbus,et al.  Ultra-Low Energy Calibration of LUX Detector using Xe Electron Capture , 2017 .

[59]  Lawrence Pinsky,et al.  The DarkSide collaboration , 2013 .

[60]  and as an in , 2022 .