The Perseus computational platform for comprehensive analysis of (prote)omics data

[1]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[2]  Pär Stattin,et al.  The Proteome of Primary Prostate Cancer. , 2016, European urology.

[3]  O. Lund,et al.  Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers , 2016, Viruses.

[4]  M. Mann,et al.  Proteomic maps of breast cancer subtypes , 2016, Nature Communications.

[5]  Daniel R. Zerbino,et al.  Ensembl 2016 , 2015, Nucleic Acids Res..

[6]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[7]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[8]  Marco Y. Hein,et al.  A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances , 2015, Cell.

[9]  O. Elroy-Stein,et al.  Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis , 2015, PLoS genetics.

[10]  Michael Hummel,et al.  Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles , 2015, Molecular & Cellular Proteomics.

[11]  Luis Mendoza,et al.  Trans‐Proteomic Pipeline, a standardized data processing pipeline for large‐scale reproducible proteomics informatics , 2015, Proteomics. Clinical applications.

[12]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[13]  Gary D Bader,et al.  Pathway and network analysis of cancer genomes , 2015, Nature Methods.

[14]  Jürgen Cox,et al.  Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links , 2015, Science.

[15]  M. Mann,et al.  A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day* , 2015, Molecular & Cellular Proteomics.

[16]  Matthias Mann,et al.  Visualization of LC‐MS/MS proteomics data in MaxQuant , 2015, Proteomics.

[17]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[18]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[19]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[20]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[21]  C. Mungall,et al.  Gene Ontology Consortium : going forward The Gene Ontology , 2015 .

[22]  Marco Y. Hein,et al.  Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS)* , 2014, Molecular & Cellular Proteomics.

[23]  Marco Y. Hein,et al.  A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation without Spike-in Standards* , 2014, Molecular & Cellular Proteomics.

[24]  M. Mann,et al.  Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. , 2014, Cell reports.

[25]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[26]  Andrew R. Jones,et al.  ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination , 2014, Nature Biotechnology.

[27]  J. Takahashi,et al.  Molecular architecture of the mammalian circadian clock. , 2014, Trends in cell biology.

[28]  M. Mann,et al.  In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism , 2014, PLoS genetics.

[29]  Achim Tresch,et al.  Periodic mRNA synthesis and degradation co‐operate during cell cycle gene expression , 2014, Molecular systems biology.

[30]  Derek J. Bailey,et al.  The One Hour Yeast Proteome* , 2013, Molecular & Cellular Proteomics.

[31]  M. Mann,et al.  The coming age of complete, accurate, and ubiquitous proteomes. , 2013, Molecular cell.

[32]  Dmitrij Frishman,et al.  Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins , 2013, PLoS Comput. Biol..

[33]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[34]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[35]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[36]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[37]  Jürgen Cox,et al.  1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data , 2012, BMC Bioinformatics.

[38]  M. Mann,et al.  Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells , 2012, Molecular Systems Biology.

[39]  F. Klauschen,et al.  Computational Modeling of Cellular Signaling Processes Embedded into Dynamic Spatial Contexts , 2012, Nature Methods.

[40]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[41]  Leslie M Loew,et al.  Spatial modeling of cell signaling networks. , 2012, Methods in cell biology.

[42]  A. Heck,et al.  The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells , 2011, Molecular systems biology.

[43]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[44]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[45]  Hong Yan,et al.  Missing value imputation for gene expression data: computational techniques to recover missing data from available information , 2011, Briefings Bioinform..

[46]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[47]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[48]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[49]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[50]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[51]  M. Mann,et al.  Super-SILAC mix for quantitative proteomics of human tumor tissue , 2010, Nature Methods.

[52]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[53]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[54]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[55]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[56]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[57]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[58]  Søren Brunak,et al.  Cyclebase.org—a comprehensive multi-organism online database of cell-cycle experiments , 2007, Nucleic Acids Res..

[59]  Alexey I Nesvizhskii,et al.  Analysis and validation of proteomic data generated by tandem mass spectrometry , 2007, Nature Methods.

[60]  David Goldberg,et al.  Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. , 2007, Analytical chemistry.

[61]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[62]  M. Mann,et al.  Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK) , 2006, Nature Methods.

[63]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[64]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[66]  Robertson Craig,et al.  Open source system for analyzing, validating, and storing protein identification data. , 2004, Journal of proteome research.

[67]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[68]  S. Bryant,et al.  Open mass spectrometry search algorithm. , 2004, Journal of proteome research.

[69]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[70]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[71]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[72]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[75]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[76]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[77]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[78]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[79]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.