A Large Ground-based Observing Campaign of the Disintegrating Planet K2-22b

We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets.

[1]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[2]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[3]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[4]  J. Jesus Gonzalez,et al.  OSIRIS tunable imager and spectrograph , 2000, Astronomical Telescopes and Instrumentation.

[5]  家 正則,et al.  Optical and IR telescope instrumentation and detectors : 27-31 March 2000, Munich, Germany , 2000 .

[6]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[7]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[8]  Tony Farrell,et al.  IRIS2: a working infrared multi-object spectrograph and camera , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[10]  András Pál,et al.  fitsh– a software package for image processing , 2011 .

[11]  Joshua N. Winn,et al.  THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b , 2010, 1012.0376.

[12]  A. Levine,et al.  POSSIBLE DISINTEGRATING SHORT-PERIOD SUPER-MERCURY ORBITING KIC 12557548 , 2012, 1201.2662.

[13]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[14]  J. Rowe,et al.  KOI-2700b—A PLANET CANDIDATE WITH DUSTY EFFLUENTS ON A 22 hr ORBIT , 2013, 1312.2054.

[15]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[16]  H. Kawahara,et al.  STARSPOTS–TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b , 2013, 1308.1585.

[17]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[18]  D. Bayliss,et al.  Ks-band secondary eclipses of WASP-19b and WASP-43b with the Anglo-Australian Telescope , 2014, 1409.2775.

[19]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[20]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[21]  V. S. Dhillon,et al.  ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope , 2014, 1408.2733.

[22]  A. Bonomo,et al.  MULTIWAVELENGTH OBSERVATIONS OF THE CANDIDATE DISINTEGRATING SUB-MERCURY KIC 12557548B,, , 2014, 1403.1879.

[23]  J. Eastman,et al.  Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017 , 2015, 1510.06434.

[24]  Jason T. Wright,et al.  A disintegrating minor planet transiting a white dwarf , 2015, Nature.

[25]  V. S. Dhillon,et al.  HIGH-SPEED PHOTOMETRY OF THE DISINTEGRATING PLANETESIMALS AT WD1145+017: EVIDENCE FOR RAPID DYNAMICAL EVOLUTION , 2015, 1512.09150.

[26]  Charles A. Beichman,et al.  UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS , 2015, 1503.03516.

[27]  S. Littlefair,et al.  DIRECT EVIDENCE FOR AN EVOLVING DUST CLOUD FROM THE EXOPLANET KIC 12557548 B , 2015, 1502.04612.

[28]  M. Paegert,et al.  THE K2-ESPRINT PROJECT. I. DISCOVERY OF THE DISINTEGRATING ROCKY PLANET K2-22b WITH A COMETARY HEAD AND LEADING TAIL , 2015, 1504.04379.

[29]  S. Rappaport,et al.  The relation between the transit depths of KIC 12557548b and the stellar rotation period , 2014, 1410.4289.

[30]  Reduced Activity And Large Particles From the Disintegrating Planet Candidate KIC 12557548b , 2016, 1605.07603.

[31]  A. Quillen,et al.  KIC 8462852: TRANSIT OF A LARGE COMET FAMILY , 2015, 1511.08821.

[32]  S. Rappaport,et al.  Gray transits of WD 1145+017 over the visible band , 2016, 1603.08823.

[33]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[34]  S. Lynn,et al.  Planet Hunters IX. KIC 8462852-where's the flux? , 2015, 1509.03622.

[35]  D. Bayliss,et al.  Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017 , 2016, 1604.07405.

[36]  J. Farihi,et al.  Spectroscopic Evolution of Disintegrating Planetesimals: Minute to Month Variability in the Circumstellar Gas Associated with WD 1145+017 , 2016, 1608.00549.

[37]  D. Maoz,et al.  Once in a blue moon: detection of ‘bluing’ during debris transits in the white dwarf WD 1145+017 , 2017, 1702.05483.

[38]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[39]  Jason T. Wright,et al.  The First Post-Kepler Brightness Dips of KIC 8462852 , 2018, 1801.00732.

[40]  U. L. Laguna,et al.  Non-grey dimming events of KIC 8462852 from GTC spectrophotometry , 2018, 1801.00720.

[41]  C. Liu,et al.  The influence of antikaon condensations on nucleon 1S0 superfluidity in neutron star matter , 2018 .