A Generalized Probability Framework to Model Economic Agents' Decisions Under Uncertainty

The applications of techniques from statistical (and classical) mechanics to model interesting problems in economics and finance have produced valuable results. The principal movement which has steered this research direction is known under the name of ‘econophysics’. In this paper, we illustrate and advance some of the findings that have been obtained by applying the mathematical formalism of quantum mechanics to model human decision making under ‘uncertainty’ in behavioral economics and finance. Starting from Ellsberg's seminal article, decision making situations have been experimentally verified where the application of Kolmogorovian probability in the formulation of expected utility is problematic. Those probability measures which by necessity must situate themselves in Hilbert space (such as ‘quantum probability’) enable a faithful representation of experimental data. We thus provide an explanation for the effectiveness of the mathematical framework of quantum mechanics in the modeling of human decision making. We want to be explicit though that we are not claiming that decision making has microscopic quantum mechanical features.

[1]  Kathrin Abendroth Patterns Of Speculation A Study In Observational Econophysics , 2016 .

[2]  Diederik Aerts,et al.  Identifying Quantum Structures in the Ellsberg Paradox , 2013, International Journal of Theoretical Physics.

[3]  A. Tversky,et al.  Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment , 1983 .

[4]  Edward E. Smith,et al.  On the adequacy of prototype theory as a theory of concepts , 1981, Cognition.

[5]  A. Tversky,et al.  The Disjunction Effect in Choice under Uncertainty , 1992 .

[6]  J. Hampton,et al.  Disjunction of natural concepts , 1988, Memory & cognition.

[7]  J. Schreiber Foundations Of Statistics , 2016 .

[8]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[9]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[10]  Massimo Marinacci,et al.  Dynamic variational preferences , 2006, J. Econ. Theory.

[11]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[12]  J. Hampton Overextension of Conjunctive Concepts: Evidence for a Unitary Model of Concept Typicality and Class Inclusion , 1988 .

[13]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[14]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[15]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[16]  Emmanuel M. Pothos,et al.  decision theory A quantum probability explanation for violations of ' rational ' Supplementary data tml , 2009 .

[17]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[18]  R. Mehra,et al.  THE EQUITY PREMIUM A Puzzle , 1985 .

[19]  W. Kip Viscusi,et al.  Handbook of the economics of risk and uncertainty , 2014 .

[20]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[21]  Diederik Aerts,et al.  Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought , 2012, Top. Cogn. Sci..

[22]  I. Gilboa Expected utility with purely subjective non-additive probabilities , 1987 .

[23]  Diederik Aerts,et al.  Quantum structure and human thought. , 2013, The Behavioral and brain sciences.

[24]  Shmuel Zamir,et al.  Type Indeterminacy: A Model for the KT(Kahneman-Tversky)-Man , 2006, physics/0604166.

[25]  Diederik Aerts,et al.  Quantum Structure in Cognition , 2008, 0805.3850.

[26]  Edi Karni,et al.  Ambiguity attitudes and social interactions: An experimental investigation , 2013 .

[27]  Laetitia Placido,et al.  Ambiguity models and the machina paradoxes , 2011 .

[28]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[29]  Sandro Sozzo,et al.  Conjunction and Negation of Natural Concepts: A Quantum-theoretic Modeling , 2014, ArXiv.

[30]  V. I. Danilov,et al.  Expected utility theory under non-classical uncertainty , 2010 .

[31]  Didier Sornette,et al.  Conditions for Quantum Interference in Cognitive Sciences , 2013, Top. Cogn. Sci..

[32]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[33]  Diederik Aerts,et al.  From Ambiguity Aversion to a Generalized Expected Utility. Modeling Preferences in a Quantum Probabilistic Framework , 2015, 1510.09058.

[34]  G. Choquet Theory of capacities , 1954 .

[35]  Lars Peter Hansen,et al.  Wanting robustness in macroeconomics , 2010 .

[36]  Diederik Aerts,et al.  A Quantum Model for the Ellsberg and Machina Paradoxes , 2012, QI.

[37]  Jennifer S Trueblood,et al.  A quantum theoretical explanation for probability judgment errors. , 2011, Psychological review.

[38]  Sandro Sozzo,et al.  A Quantum Probability Explanation in Fock Space for Borderline Contradictions , 2013, 1311.6050.

[39]  Christophe Schinckus,et al.  Introduction to econophysics: towards a new step in the evolution of physical sciences , 2013 .

[40]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[41]  Shmuel Zamir,et al.  Type Indeterminacy-A Model of the KT-man ( Kahneman Tversky ) , 2003 .

[42]  Richard M. Shiffrin,et al.  Context effects produced by question orders reveal quantum nature of human judgments , 2014, Proceedings of the National Academy of Sciences.

[43]  J. Barkley Rosser,et al.  DYNAMICS OF MARKETS : ECONOPHYSICS AND FINANCE , 2006 .

[44]  A. Tversky,et al.  Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment , 1983 .

[45]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[46]  Olivier L’Haridon,et al.  Betting on Machina’s reflection example: an experiment on ambiguity , 2010 .

[47]  Emmanuel Haven,et al.  Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts , 2009 .

[48]  Marciano M. Siniscalchi,et al.  Ambiguity and Ambiguity Aversion , 2014 .

[49]  Mark J. Machina,et al.  Risk, Ambiguity, and the Rank-Dependence Axioms , 2009 .

[50]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..