ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS
暂无分享,去创建一个
[1] István Faragó,et al. Numerical treatment of linear parabolic problems. , 2008 .
[2] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[3] Tomás Vejchodský,et al. Discrete maximum principle for higher-order finite elements in 1D , 2007, Math. Comput..
[4] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[5] T. L. Horváth,et al. Implicit a posteriori error estimation using patch recovery techniques , 2012 .
[6] E. Süli,et al. A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .
[7] Jinchao Xu,et al. Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..
[8] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[9] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[10] J. Karátson,et al. Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems , 2009 .
[11] Hans D. Mittelmann,et al. Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.
[12] Miklós E. Mincsovics,et al. Discrete maximum principle for interior penalty discontinuous Galerkin methods , 2013 .
[13] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[14] Sergey Korotov,et al. A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery , 2003, J. Num. Math..
[15] P. Solín,et al. Space and Time Adaptive Two-Mesh hp-Finite Element Method for Transient Microwave Heating Problems , 2010 .
[16] Ivo Dolezel,et al. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..
[17] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[18] Todd F. Dupont,et al. Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..
[19] Kazuo Ishihara,et al. Strong and weak discrete maximum principles for matrices associated with elliptic problems , 1987 .
[20] M. Ainsworth. The influence and selection of subspaces for a posteriori error estimators , 1996 .
[21] Serge Prudhomme,et al. A posteriori error estimation of steady-state finite element solutions of the Navier—Stokes equations by a subdomain residual method , 1998 .
[22] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[23] Goong Chen,et al. Quantum Computing Devices (Chapman & Hall/Crc Applied Mathematics and Nonlinear Science Series) , 2006 .
[24] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[25] Martin Vohralík,et al. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..
[26] M. Ainsworth,et al. A posteriori error estimators in the finite element method , 1991 .
[27] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[28] Béatrice Rivière,et al. Sub-optimal Convergence of Non-symmetric Discontinuous Galerkin Methods for Odd Polynomial Approximations , 2009, J. Sci. Comput..
[29] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..
[30] Marjorie A. McClain,et al. A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .
[31] Ferenc Izsák,et al. Implicit a posteriori error estimates for the Maxwell equations , 2008, Math. Comput..
[32] Miklós E. Mincsovics,et al. On the Differences of the Discrete Weak and Strong Maximum Principles for Elliptic Operators , 2011, LSSC.
[33] I. Doležel,et al. Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations , 2010 .
[34] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[35] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[36] Philippe G. Ciarlet,et al. Discrete maximum principle for finite-difference operators , 1970 .
[37] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[38] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[39] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[40] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[41] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[42] Blanca Ayuso de Dios,et al. L2‐estimates for the DG IIPG‐0 scheme , 2012 .
[43] Endre Süli,et al. Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .
[44] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[45] Mark Ainsworth,et al. Fully Computable Bounds for the Error in Nonconforming Finite Element Approximations of Arbitrary Order on Triangular Elements , 2008, SIAM J. Numer. Anal..
[46] Glen Hansen,et al. Comparison of multimesh hp-FEM to interpolation and projection methods for spatial coupling of thermal and neutron diffusion calculations , 2011, J. Comput. Phys..
[47] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[48] Antti Hannukainen,et al. On Weakening Conditions for Discrete Maximum Principles for Linear Finite Element Schemes , 2009, NAA.
[49] Richard S. Varga,et al. On a Discrete Maximum Principle , 1966 .
[50] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[51] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[52] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[53] William F. Mitchell,et al. PHAML User's Guide , 2006 .
[54] Ferenc Izsák,et al. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates , 2006 .
[55] Carsten Carstensen,et al. A convergent adaptive finite element method for the primal problem of elastoplasticity , 2006 .
[56] Pekka Neittaanmäki,et al. Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .
[57] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[58] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[59] NODAL O(h^4)-SUPERCONVERGENCE IN 3D BY AVERAGING PIECEWISE LINEAR, BILINEAR, AND TRILINEAR FE APPROXIMATIONS , 2009 .
[60] Carsten Carstensen,et al. Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .
[61] Karel Segeth,et al. Space-time adaptive $hp$-FEM: Methodology overview , 2008 .
[62] Joachim Schöberl,et al. A posteriori error estimates for Maxwell equations , 2007, Math. Comput..
[63] Peter Oswald,et al. Error estimates and adaptivity , 1994 .
[64] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[65] P. Földesi,et al. An Approximate Analytic Solution of the Inventory Balance Delay Differential Equation , 2010 .
[66] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .