ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

[1]  István Faragó,et al.  Numerical treatment of linear parabolic problems. , 2008 .

[2]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[3]  Tomás Vejchodský,et al.  Discrete maximum principle for higher-order finite elements in 1D , 2007, Math. Comput..

[4]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[5]  T. L. Horváth,et al.  Implicit a posteriori error estimation using patch recovery techniques , 2012 .

[6]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[7]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[8]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[9]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[10]  J. Karátson,et al.  Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems , 2009 .

[11]  Hans D. Mittelmann,et al.  Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.

[12]  Miklós E. Mincsovics,et al.  Discrete maximum principle for interior penalty discontinuous Galerkin methods , 2013 .

[13]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[14]  Sergey Korotov,et al.  A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery , 2003, J. Num. Math..

[15]  P. Solín,et al.  Space and Time Adaptive Two-Mesh hp-Finite Element Method for Transient Microwave Heating Problems , 2010 .

[16]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[17]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[18]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[19]  Kazuo Ishihara,et al.  Strong and weak discrete maximum principles for matrices associated with elliptic problems , 1987 .

[20]  M. Ainsworth The influence and selection of subspaces for a posteriori error estimators , 1996 .

[21]  Serge Prudhomme,et al.  A posteriori error estimation of steady-state finite element solutions of the Navier—Stokes equations by a subdomain residual method , 1998 .

[22]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[23]  Goong Chen,et al.  Quantum Computing Devices (Chapman & Hall/Crc Applied Mathematics and Nonlinear Science Series) , 2006 .

[24]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[25]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[26]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[27]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[28]  Béatrice Rivière,et al.  Sub-optimal Convergence of Non-symmetric Discontinuous Galerkin Methods for Odd Polynomial Approximations , 2009, J. Sci. Comput..

[29]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..

[30]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[31]  Ferenc Izsák,et al.  Implicit a posteriori error estimates for the Maxwell equations , 2008, Math. Comput..

[32]  Miklós E. Mincsovics,et al.  On the Differences of the Discrete Weak and Strong Maximum Principles for Elliptic Operators , 2011, LSSC.

[33]  I. Doležel,et al.  Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations , 2010 .

[34]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[35]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[36]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[37]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[38]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[39]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[40]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[41]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[42]  Blanca Ayuso de Dios,et al.  L2‐estimates for the DG IIPG‐0 scheme , 2012 .

[43]  Endre Süli,et al.  Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .

[44]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[45]  Mark Ainsworth,et al.  Fully Computable Bounds for the Error in Nonconforming Finite Element Approximations of Arbitrary Order on Triangular Elements , 2008, SIAM J. Numer. Anal..

[46]  Glen Hansen,et al.  Comparison of multimesh hp-FEM to interpolation and projection methods for spatial coupling of thermal and neutron diffusion calculations , 2011, J. Comput. Phys..

[47]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[48]  Antti Hannukainen,et al.  On Weakening Conditions for Discrete Maximum Principles for Linear Finite Element Schemes , 2009, NAA.

[49]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[50]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[51]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[52]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[53]  William F. Mitchell,et al.  PHAML User's Guide , 2006 .

[54]  Ferenc Izsák,et al.  Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates , 2006 .

[55]  Carsten Carstensen,et al.  A convergent adaptive finite element method for the primal problem of elastoplasticity , 2006 .

[56]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[57]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[58]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[59]  NODAL O(h^4)-SUPERCONVERGENCE IN 3D BY AVERAGING PIECEWISE LINEAR, BILINEAR, AND TRILINEAR FE APPROXIMATIONS , 2009 .

[60]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[61]  Karel Segeth,et al.  Space-time adaptive $hp$-FEM: Methodology overview , 2008 .

[62]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[63]  Peter Oswald,et al.  Error estimates and adaptivity , 1994 .

[64]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[65]  P. Földesi,et al.  An Approximate Analytic Solution of the Inventory Balance Delay Differential Equation , 2010 .

[66]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .