Traversability Analysis for Unmanned Ground Vehicles

Scientists at Defence R&D Canada – Suffield have been investigating autonomous operation of Unmanned Ground Vehicles (UGVs). In order to navigate unknown terrain effectively, UGVs must be able to create an accurate representation of the operational environment. This is typically done by constructing a geometric representation of the environment, called a Terrain Map, from exteroceptive and proprioceptive data streams. This Terrain Map can further be analyzed to provide a measure of the traversability of the terrain. The resulting Traversability Map can be utilized by path planning and obstacle avoidance algorithms to determine the “best” path to follow. This paper discusses DRDC’s Traversability Map as a method of world representation. The Traversability Map interprets geometric data by calculating statistics about the environment to determine whether an area is traversable or not. In doing so, the Traversability Map interprets geometry from a vehicle specific context, allowing for the unique mobility characteristics of platforms to dictate map parameters.

[1]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[2]  Sebastian Thrun,et al.  A Personal Account of the Development of Stanley, the Robot That Won the DARPA Grand Challenge , 2006, AI Mag..

[3]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[5]  Jeffrey J. Biesiadecki,et al.  The Athena SDM Rover: a testbed for Mars rover mobility , 2000 .

[6]  Takeo Kanade,et al.  High-Resolution Terrain Map from Multiple Sensor Data , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[8]  Jack Collier,et al.  Towards Distributed Intelligence: A High Level Definition , 2004 .

[9]  Sebastian Thrun,et al.  Learning Occupancy Grid Maps with Forward Sensor Models , 2003, Auton. Robots.

[10]  David Erickson,et al.  The ALS project: lessons learned , 2006, SPIE Defense + Commercial Sensing.

[11]  Christopher Rasmussen,et al.  Combining laser range, color, and texture cues for autonomous road following , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[13]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[14]  Cang Ye,et al.  A method for mobile robot navigation on rough terrain , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[16]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[17]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[18]  L. Chrisman,et al.  Obstacle Avoidance and Safeguarding for a Lunar Rover , 1996 .

[19]  Anthony Stentz,et al.  Online adaptive rough-terrain navigation vegetation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  S. Thrun Learning Occupancy Grids With Forward Sensor Models , 2002 .

[21]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[22]  Hans Utz,et al.  Miro - middleware for mobile robot applications , 2002, IEEE Trans. Robotics Autom..

[23]  M. Hebert,et al.  Local Perception for Mobile Robot Navigation in Natural Terrain: Two Approaches , 1993 .

[24]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .