A Multiscale Method for Porous Microstructures
暂无分享,去创建一个
[1] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[2] Daniel Peterseim,et al. Computation of eigenvalues by numerical upscaling , 2012, Numerische Mathematik.
[3] W. Hackbusch,et al. Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .
[4] P. Henning,et al. A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.
[5] Patrick Henning,et al. The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains , 2009, Numerische Mathematik.
[6] C. Engwer,et al. An unfitted finite element method using discontinuous Galerkin , 2009 .
[7] M. Rumpf,et al. Composite finite elements for 3D image based computing , 2009 .
[8] S. Sauter,et al. Extension operators and approximation on domains containing small geometric details , 1999 .
[9] D. Peterseim. Variational Multiscale Stabilization and the Exponential Decay of Fine-Scale Correctors , 2015, 1505.07611.
[10] Andrey L. Piatnitski,et al. Homogenization: Methods and Applications , 2007 .
[11] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[12] Daniel Peterseim,et al. Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..
[13] Daniel Peterseim,et al. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations , 2015, 1511.09244.
[14] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[15] Daniel Peterseim,et al. Multiscale Partition of Unity , 2013, 1312.5922.
[16] Randolph E. Bank,et al. On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.
[17] C. M. Elliott,et al. A Finite-element Method for Solving Elliptic Equations with Neumann Data on a Curved Boundary Using Unfitted Meshes , 1984 .
[18] P. Houston,et al. hp–Adaptive composite discontinuous Galerkin methods for elliptic problems on complicated domains , 2014 .
[19] Giancarlo Sangalli,et al. Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..
[20] Peter Knabner,et al. Numerik partieller differentialgleichungen : eine anwendungsorientierte Einführung , 2000 .
[21] Daniel Peterseim,et al. Two-Level Discretization Techniques for Ground State Computations of Bose-Einstein Condensates , 2013, SIAM J. Numer. Anal..
[22] Assyr Abdulle,et al. Localized orthogonal decomposition method for the wave equation with a continuum of scales , 2014, Math. Comput..
[23] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[24] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[25] Frédéric Legoll,et al. An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..
[26] Axel Målqvist,et al. Multiscale Methods for Elliptic Problems , 2011, Multiscale Model. Simul..
[27] Daniel Peterseim,et al. Robust Numerical Upscaling of Elliptic Multiscale Problems at High Contrast , 2016, Comput. Methods Appl. Math..
[28] Robert Scheichl,et al. Weighted Poincaré inequalities , 2013 .
[29] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .