Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt

Monomer chemical structure and architecture represent the most important characteristics of polymers that affect basic molecular parameters (such as the microscopic cohesive energy parameter ϵ and chain persistence length) and that correspondingly govern the bulk physical properties of polymer materials. Here, we focus on elucidating how the microscopic parameter ϵ influences the bulk thermodynamic properties of polymer melts by using molecular dynamics simulations for a standard coarse-grained bead–spring model of unentangled polymer melts under both constant volume and constant pressure conditions. Basic dimensionless thermodynamic properties, such as the cohesive energy density, thermal expansion coefficient, isothermal compressibility, and surface tension, are found to be universal functions of the temperature scaled by ϵ, and thermodynamic signatures for the onset and end of glass formation are identified based on observable features from the static structure factor. We also find that general trends ...

[1]  R. F. Boyer Dynamics and thermodynamics of the liquid state (T < Tg) of amorphous polymers , 1980 .

[2]  D. M. Joncich,et al.  Melting, thermal expansion, and the Lindemann rule for elemental substances , 2010 .

[3]  J. Douglas,et al.  Tuning polymer melt fragility with antiplasticizer additives. , 2007, The Journal of chemical physics.

[4]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[5]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[6]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[7]  K. Freed,et al.  Polymer Glass-Formation in Variable Dimension , 2015, 1505.07507.

[8]  M. Johnson,et al.  A structural signature of liquid fragility , 2014, Nature Communications.

[9]  Henry Eyring,et al.  The Theory of Absolute Reaction Rates and its Application to Viscosity and Diffusion in the Liquid State. , 1941 .

[10]  Jean-Louis Barrat,et al.  Molecular dynamics simulations of glassy polymers , 2010, 1002.2065.

[11]  I. Sanchez,et al.  New Zeno-Like Liquid States. , 2016, The journal of physical chemistry. B.

[12]  Ding-hai Huang,et al.  New insights into the fragility dilemma in liquids , 2001 .

[13]  Jack F Douglas,et al.  Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials , 2015, Proceedings of the National Academy of Sciences.

[14]  Schowl Hedvat Molecular interpretation of T∥, the rubbery-viscous ‘transition’ temperature of amorphous polymers , 1981 .

[15]  P. Debenedetti,et al.  Liquid Structure, Thermodynamics, and Mixing Behavior of Saturated Hydrocarbon Polymers. 1. Cohesive Energy Density and Internal Pressure , 1998 .

[16]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[17]  D. M. Colucci,et al.  Dynamic fragility in polymers: A comparison in isobaric and isochoric conditions , 2002 .

[18]  K. Freed,et al.  Influence of Cohesive Energy on Relaxation in a Model Glass-Forming Polymer Melt , 2016 .

[19]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[20]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[21]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[22]  J. Dudowicz,et al.  Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids? , 2006, The Journal of chemical physics.

[23]  D. Tabor Micromolecular processes in the viscous flow of hydrocarbons , 1988 .

[24]  T. Yokoyama,et al.  Glass Transitions in Ionic Polymers - The Acrylates. , 1971 .

[25]  J. Douglas,et al.  Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite. , 2013, Soft matter.

[26]  J. Dudowicz,et al.  Generalized Entropy Theory of Polymer Glass Formation , 2008 .

[27]  Beatriz A Pazmiño Betancourt,et al.  String model for the dynamics of glass-forming liquids. , 2014, The Journal of chemical physics.

[28]  Kenneth S. Schweizer,et al.  Entropic barriers, activated hopping, and the glass transition in colloidal suspensions , 2003 .

[29]  J. Koberstein,et al.  The measurement of polymer surface tension by drop image processing: Application to PDMS and comparison with theory , 1985 .

[30]  Paul Z. Hanakata,et al.  A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. , 2015, The Journal of chemical physics.

[31]  A. Sokolov,et al.  Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture , 2008 .

[32]  Robert A. Riggleman,et al.  Influence of Backbone Rigidity on Nanoscale Confinement Effects in Model Glass-Forming Polymers , 2013 .

[33]  C. Lacabanne,et al.  Thermally stimulated current (TSC) study of the Tg and Tll transitions in anionic polystyrenes , 1980 .

[34]  Freezing and melting criteria in non-equilibrium , 2001 .

[35]  H. Batzer,et al.  Einfluß der Segmentstruktur und der Vernetzung auf den Glasübergang Tg. Möglichkeiten der Vorausberechnung von Tg über die Kohäsionsenergie Ecoh , 1979 .

[36]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[37]  E. van der Giessen,et al.  Effect of bending and torsion rigidity on self-diffusion in polymer melts: a molecular-dynamics study. , 2005, The Journal of chemical physics.

[38]  A. Sokolov,et al.  Effect of Polar Interactions on Polymer Dynamics , 2012 .

[39]  K. Freed,et al.  Influence of Cohesive Energy and Chain Stiffness on Polymer Glass Formation , 2014, 1409.6781.

[40]  D. Tabor,et al.  Diffusion in molten polymers: the influence of hydrostatic pressure , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[42]  J. Dudowicz,et al.  Advances in the generalized entropy theory of glass-formation in polymer melts. , 2014, The Journal of chemical physics.

[43]  K. Freed,et al.  Generalized Entropy Theory of Glass Formation in Polymer Melts with Specific Interactions , 2015, 1503.06306.

[44]  Jianzhong Jiang,et al.  Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. , 2015, The Journal of chemical physics.

[45]  Robert Simha,et al.  On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers , 1962 .

[46]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[47]  F. Stillinger,et al.  Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition. , 2012, The Journal of chemical physics.

[48]  Tsuyoshi Tanaka,et al.  Role of electrostatic forces in the glass transition temperatures of ionic polymers , 1977 .

[49]  J. Prausnitz,et al.  Solubilities of fifteen solvents in copolymers of poly(vinyl acetate) and poly(vinyl chloride) from gas-liquid chromatography. Estimation of polymer solubility parameters , 1980 .

[50]  J. H. Gibbs,et al.  Chain Stiffness and the Lattice Theory of Polymer Phases , 1958 .

[51]  Janna K. Maranas,et al.  A molecular picture of motion in polyolefins. , 2010, The Journal of chemical physics.

[52]  K. Freed,et al.  Application of the entropy theory of glass formation to poly(alpha-olefins). , 2009, The Journal of chemical physics.

[53]  K. Freed,et al.  Lattice cluster theory for polymer melts with specific interactions. , 2014, The Journal of chemical physics.

[54]  V. A. Ryzhov,et al.  Far infrared spectroscopy of polymers , 1994 .

[55]  B. Wunderlich,et al.  Heat capacities of paraffins and polyethylene , 1991 .

[56]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. I. The Dependence of the Viscosity of Liquids on Temperature , 1951 .

[57]  K. Freed,et al.  Entropy Theory of Polymer Glass-Formation in Variable Spatial Dimension. , 2016 .

[58]  Paul Z. Hanakata,et al.  Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films , 2014, Nature Communications.

[59]  S. Sastry,et al.  The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. , 2013, The Journal of chemical physics.

[60]  K. Trachenko,et al.  Collective excitations and thermodynamics of disordered state: new insights into an old problem. , 2013, The journal of physical chemistry. B.

[61]  Chase E. Zachary,et al.  Hyperuniformity in point patterns and two-phase random heterogeneous media , 2009, 0910.2172.

[62]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[63]  R. F. Boyer T from the temperature dependence of carbon-13 NMR correlation times c , 1988 .

[64]  H. Eugene Stanley,et al.  Entropy and dynamic properties of water below the homogeneous nucleation temperature , 1999, cond-mat/9903451.

[65]  B. Wunderlich,et al.  Computation of Heat Capacities of Solids Using a General Tarasov Equation , 1998 .

[66]  Rajeev Kumar,et al.  Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses. , 2013, Physical chemistry chemical physics : PCCP.

[67]  K. Freed,et al.  LATTICE CLUSTER THEORY OF MULTICOMPONENT POLYMER SYSTEMS : CHAIN SEMIFLEXIBILITY AND SPECIFIC INTERACTIONS , 2007 .

[68]  P. Flory,et al.  Equation-of-state parameters for polystyrene , 1971 .

[69]  A. Granato The specific heat of simple liquids , 2002 .

[70]  Martin Goldstein,et al.  Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid , 1976 .

[71]  A. Eisenberg,et al.  Possible Experimental Equivalence of the Gibbs—DiMarzio and Free‐Volume Theories of the Glass Transition , 1966 .

[72]  A. Eisenberg,et al.  Glass transitions in ionic polymers , 1966 .

[73]  A. Tonelli,et al.  Contribution of the Conformational Specific Heat of Polymer Chains to the Specific Heat Difference between Liquid and Glass , 1978 .

[74]  Sinan Keten,et al.  Coupled effects of substrate adhesion and intermolecular forces on polymer thin film glass-transition behavior. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[75]  K. Schweizer,et al.  Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts. , 2004, The Journal of chemical physics.

[76]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[77]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[78]  Zhong-yuan Lu,et al.  The glass transition of polymers with different side-chain stiffness confined in free-standing thin films. , 2015, The Journal of chemical physics.

[79]  Salvatore Torquato,et al.  Critical slowing down and hyperuniformity on approach to jamming. , 2016, Physical review. E.

[80]  I. Sanchez Dimensionless thermodynamics: a new paradigm for liquid state properties. , 2014, The journal of physical chemistry. B.

[81]  J. Douglas,et al.  Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. , 2015, The Journal of chemical physics.

[82]  J. Douglas,et al.  Modifying fragility and collective motion in polymer melts with nanoparticles. , 2011, Physical review letters.

[83]  Juan J de Pablo,et al.  Influence of confinement on the fragility of antiplasticized and pure polymer films. , 2006, Physical review letters.

[84]  K. Freed,et al.  Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory. , 2013, The Journal of chemical physics.

[85]  V. A. Ryzhov,et al.  The role of thermal analysis in revealing the common molecular nature of transitions in polymers , 1994 .

[86]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[88]  K. Schweizer,et al.  Universal scaling, dynamic fragility, segmental relaxation, and vitrification in polymer melts. , 2004, The Journal of chemical physics.

[89]  I. Sanchez Liquids: Surface tension, compressibility, and invariants , 1983 .

[90]  C. Angell,et al.  A thermodynamic connection to the fragility of glass-forming liquids , 2001, Nature.

[91]  K. Ngai,et al.  Chemical Structure and Intermolecular Cooperativity: Dielectric Relaxation Results , 1993 .

[92]  Wolfgang Götze,et al.  Complex Dynamics of Glass-Forming Liquids , 2008 .