Direct imaging of electrical switching of antiferromagnetic Néel order in α−Fe2O3 epitaxial films

X rays have been used to image the spin directions in an antiferromagnetic thin film of hematite ($\ensuremath{\alpha}$-Fe${}_{2}$O${}_{3}$) and show how they reorient in response to electrical pulses. Spin switching is shown to depend on the current direction and occurs even outside the current path. The results here show that, in addition to any direct interaction between the electrical current and the spins, thermal effects lead to spin reorientation, highlighting the delicate balance of interactions important to understanding the physics of current-induced switching in antiferromagnets.

[1]  J. Sinova,et al.  Direct Imaging of Current-Induced Antiferromagnetic Switching Revealing a Pure Thermomagnetoelastic Switching Mechanism in NiO. , 2020, Nano letters.

[2]  T. Metzger,et al.  Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs , 2020, Physical Review Materials.

[3]  J. Greer,et al.  Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers , 2020 .

[4]  Jinwoo Hwang,et al.  Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe_{2}O_{3} Epitaxial Films. , 2019, Physical review letters.

[5]  S. Huang,et al.  Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. , 2019, Physical review letters.

[6]  Luqiao Liu,et al.  Quantitative Study on Current-Induced Effect in an Antiferromagnet Insulator/Pt Bilayer Film. , 2019, Physical review letters.

[7]  M. Klaui,et al.  Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au , 2019, Physical Review B.

[8]  E. Saitoh,et al.  Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. , 2018, Physical review letters.

[9]  D. Ralph,et al.  Spin Seebeck Imaging of Spin-Torque Switching in Antiferromagnetic Pt/NiO Heterostructures , 2018, Physical Review X.

[10]  F. Pan,et al.  Strong Orientation-Dependent Spin-Orbit Torque in Thin Films of the Antiferromagnet Mn 2 Au , 2018 .

[11]  F. Pan,et al.  Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. , 2018, Physical review letters.

[12]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[13]  Tristan Matalla-Wagner,et al.  Electrical Switching of Antiferromagnetic Mn2Au and the Role of Thermal Activation , 2017, Physical Review Applied.

[14]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[15]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[16]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[17]  J. Park,et al.  Strain control of Morin temperature in epitaxial α-Fe2O3(0001) film , 2013 .

[18]  A. Hoffmann Spin Hall Effects in Metals , 2013, IEEE Transactions on Magnetics.

[19]  A. Scholl,et al.  Cryogenic PEEM at the Advanced Light Source , 2012 .

[20]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[21]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[22]  Lu-ning,et al.  Observation of antiferromagnetic domains in epitaxial thin films , 2000, Science.

[23]  A. Morrish Canted Antiferromagnetism: Hematite , 1995 .

[24]  Chen,et al.  X-ray magnetic dichroism of antiferromagnet Fe2O3: The orientation of magnetic moments observed by Fe 2p x-ray absorption spectroscopy. , 1993, Physical review letters.