A Jacobi-like algorithm for computing the generalized Schur form of a regular pencil

Abstract We develop a Jacobi-like scheme for computing the generalized Schur form ofa regular pencil of matrices σB − A . The method starts with a preliminary triangularization of the matrix B and iteratively reduces A to triangular form, while maintaining B triangular. The scheme heavily relies on the technique of Stewart for computing the Schur form of an arbitrary matrix A . Just as Stewart's algorithm, this one can efficiently be implemented in parallel on a square array of processors. This explains some of its peculiarities, and at the same time yields further insight in Stewart's algorithm.

[1]  G. Forsythe,et al.  The cyclic Jacobi method for computing the principal values of a complex matrix , 1960 .

[2]  Herman H. Goldstine,et al.  A Procedure for the Diagonalization of Normal Matrices , 1959, JACM.

[3]  E. G. Kogbetliantz Solution of linear equations by diagonalization of coefficients matrix , 1955 .

[4]  Vjeran Hari,et al.  On the Convergence of Cyclic Jacobi-Like Processes , 1986 .

[5]  Paul Van Dooren,et al.  On the quadratic convergence of Kogbetliantz's algorithm for computing the singular value decomposition , 1986 .

[6]  K. Zimmermann,et al.  Zur Konvergenz eines Jacobiverfahrens für gewöhnliche und verallgemeinerte Eigenwertprobleme , 1969 .

[7]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[8]  A. Laub,et al.  Computing the singular value decompostion of a product of two matrices , 1986 .

[9]  Peter Henrici,et al.  An estimate for the norms of certain cyclic Jacobi operators , 1968 .

[10]  H. P. Kempen On the quadratic convergence of the special cyclic Jacobi method , 1966 .

[11]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[12]  Paul Van Dooren,et al.  On Kogbetliantz's SVD Algorithm in the Presence of Clusters , 1987 .

[13]  Axel Ruhe Closest normal matrix finally found! , 1987 .

[14]  G. Stewart A Jacobi-Like Algorithm for Computing the Schur Decomposition of a Nonhermitian Matrix , 1985 .

[15]  Axel Ruhe On the quadratic convergence of the Jabobi method for normal matrices , 1967 .

[16]  R. Brent,et al.  Computation of the Singular Value Decomposition Using Mesh-Connected Processors , 1983 .

[17]  R. Brent,et al.  The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .

[18]  George Loizou On the quadratic convergence of the Jacobi method for normal matrices , 1972, Comput. J..

[19]  Franklin T. Luk,et al.  A Rotation Method for Computing the QR-Decomposition , 1986 .

[20]  J. H. Wilkinson Note on the quadratic convergence of the cyclic Jacobi process , 1962 .

[21]  Patricia J. Eberlein,et al.  On the Schur Decomposition of a Matrix for Parallel Computation , 1985, IEEE Transactions on Computers.