Comparing the globalness of bipartite unitary operations: delocalisation power, entanglement cost and entangling power†

We compare three different characterizations of the globalness of bipartite unitary operations, namely, delocalization power, entanglement cost, and entangling power, to investigate global properties of unitary operations. We show that the globalness of the same unitary operation depends on whether input states are given by unknown states representing pieces of quantum information, or a set of known states for the characterization. We extend our analysis on the delocalization power in two ways. First, we show that the delocalization power differs whether the global operation is applied on one piece or two pieces of quantum information. Second, by introducing a new task called LOCC one-piece relocation, we prove that the controlled-unitary operations do not have the delocalization power strong enough to relocate one of two pieces of quantum information by adding LOCC.

[1]  John A Smolin,et al.  Entangling and disentangling power of unitary transformations are not equal. , 2009, Physical review letters.

[2]  Andrey Kutuzov Using descriptive mark-up to formalize translation quality assessment , 2008, ArXiv.

[3]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[4]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[5]  Anthony Chefles,et al.  Entangling capacity and distinguishability of two-qubit unitary operators (10 pages) , 2005, quant-ph/0502083.

[6]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[7]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[8]  Self-teleportation and its application on LOCC estimation and other tasks , 2007, 0709.3250.

[9]  Elham Kashefi,et al.  Ancilla-driven universal quantum computation , 2010 .

[10]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[11]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[12]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[13]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[14]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[15]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[16]  Akihito Soeda,et al.  Entanglement cost of implementing controlled-unitary operations. , 2010, Physical review letters.

[17]  M. Murao,et al.  Delocalization power of global unitary operations on quantum information , 2010, 1004.2114.

[18]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[19]  Martin B Plenio,et al.  Entangling power of passive optical elements. , 2003, Physical review letters.

[20]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .