Density functional theory for hydrogen storage materials: successes and opportunities

Solid state systems for hydrogen storage continue to be the focus of considerable international research, driven to a large extent by technological demands, especially for mobile applications. Density functional theory (DFT) has become a valuable tool in this effort. It has greatly expanded our understanding of the properties of known hydrides, including electronic structure, hydrogen bonding character, enthalpy of formation, elastic behavior, and vibrational energetics. Moreover, DFT holds substantial promise for guiding the discovery of new materials. In this paper we discuss, within the context of results from our own work, some successes and a few shortcomings of state-of-the-art DFT as applied to hydrogen storage materials.

[1]  L. Hector,et al.  La(TM)5 hydrides (TM = Fe, Co, Ni): Theoretical perspectives , 2007 .

[2]  Walter Wolf,et al.  Ab Initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides , 2007 .

[3]  R. Martoňák,et al.  Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms , 2007 .

[4]  Yanming Ma,et al.  Phonon and elastic instabilities in rocksalt alkali hydrides under pressure : First-principles study , 2007 .

[5]  Donald J. Siegel,et al.  Reaction energetics and crystal structure of Li 4 BN 3 H 10 from first principles , 2006, cond-mat/0607687.

[6]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[7]  G. Ceder,et al.  Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure , 2006 .

[8]  L. Hector,et al.  Crystal structures and phase transformation of deuterated lithium imide, Li2ND , 2006 .

[9]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[10]  F. Pinkerton,et al.  Tetragonal I41/amd crystal structure of Li3BN2 from dehydrogenated Li-B-N-H , 2006 .

[11]  Christopher M Wolverton,et al.  Theoretical prediction of low-energy crystal structures and hydrogen storage energetics in Li 2 N H , 2006 .

[12]  L. Hector,et al.  Electronic structure and energetics of the quaternary hydride Li4BN3H10 , 2006 .

[13]  W. David,et al.  Synthesis and crystal structure of Li4BH4(NH2)3. , 2006, Chemical communications.

[14]  G. Meisner,et al.  Hydrogen release from mixtures of lithium borohydride and lithium amide: a phase diagram study. , 2006, The journal of physical chemistry. B.

[15]  G. Meisner,et al.  On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. , 2006, Inorganic chemistry.

[16]  G. Meisner,et al.  Study of the lithium–nitrogen–hydrogen system , 2005 .

[17]  L. Hector,et al.  Energetics of the Li amide/Li imide hydrogen storage reaction , 2005 .

[18]  Y. Kojima,et al.  IR characterizations of lithium imide and amide , 2005 .

[19]  J.F.R. de Castro,et al.  Improving H-sorption in MgH2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying , 2005 .

[20]  G. Meisner,et al.  Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. , 2005, The journal of physical chemistry. B.

[21]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[22]  L. Hector,et al.  Electronic and elastic properties of RCo5 and RCo5Hn (R = La, Ce, Pr) , 2004 .

[23]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[24]  R. Cohen,et al.  Comment on ‘On the importance of the free energy for elasticity under pressure’ , 2004, cond-mat/0404344.

[25]  V. Ozoliņš,et al.  Hydrogen in aluminum: First-principles calculations of structure and thermodynamics , 2004 .

[26]  Z. Guo,et al.  Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation , 2004 .

[27]  H. Fujii,et al.  Lithium nitride for reversible hydrogen storage , 2004 .

[28]  Lin Chen,et al.  Alloying effects of transition metals on chemical bonding in magnesium hydride MgH2 , 2004 .

[29]  K. L. Tan,et al.  Interaction between Lithium Amide and Lithium Hydride , 2003 .

[30]  R. Ahuja,et al.  LiH under high pressure and high temperature: A first‐principles study , 2003 .

[31]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[32]  Gerbrand Ceder,et al.  First-principles study of the stability and electronic structure of metal hydrides , 2002 .

[33]  O. Yeheskel,et al.  Elastic moduli of polycrystalline LaAlxNi5-x , 2002 .

[34]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[35]  J. Rodgers,et al.  Ab initio Stiffness for Low Quartz and Calcite , 2002 .

[36]  Ju Li,et al.  Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals , 2001 .

[37]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[38]  A. Załuska,et al.  Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni , 1999 .

[39]  W. Schnick,et al.  β-SrNH und β-SrND – Synthese und Kristallstrukturbestimmung mittels Röntgen- und Neutronenbeugung an Pulvern , 1999 .

[40]  A. Rubio,et al.  LOW-ENERGY RELATIVISTIC EFFECTS AND NONLOCALITY IN TIME-DEPENDENT TUNNELING , 1999, quant-ph/0006110.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Zhou,et al.  Stability criteria for homogeneously stressed materials and the calculation of elastic constants. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Li,et al.  Mechanical instabilities of homogeneous crystals. , 1995, Physical review. B, Condensed matter.

[45]  H. Jacobs,et al.  Infrared and Raman studies on the internal modes of lithium amide , 1995 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[48]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[49]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[50]  Ruoff,et al.  High-pressure studies of NaH to 54 GPa. , 1987, Physical review. B, Condensed matter.

[51]  B. W. James,et al.  The low-temperature variation of the elastic constants of lithium hydride and lithium deuteride , 1982 .

[52]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[53]  H. Ledbetter Sound velocities and elastic-constant averaging for polycrystalline copper , 1980 .

[54]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[55]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[56]  K. Buschow Note on the stability of rare earth-cobalt compounds with CaCu5 structure , 1972 .

[57]  H. Jacobs,et al.  Neubestimmung der Kristallstruktur des Lithiumamids , 1972 .

[58]  M. Klein,et al.  Relationship between Adiabatic Elastic Constants and the Slopes of Phonon Dispersion Curves for Rare-Gas Solids , 1971 .

[59]  D. K. Smith,et al.  Low-temperature thermal expansion of LiH, MgO and CaO , 1968 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .