Mathematical morphology for tensor data induced by the Loewner orderingin higher dimensions

Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the matrix-valued setting. We start by presenting novel definitions for the maximum and minimum of a set of matrices since these notions lie at the heart of the morphological operations. In contrast to naive approaches like the component-wise maximum or minimum of the matrix channels, our approach is based on the Loewner ordering for symmetric matrices. The notions of maximum and minimum deduced from this partial ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. We introduce erosion, dilation, opening, closing, top hats, morphological derivatives, shock filters, and mid-range filters for positive semidefinite matrix-valued images. These morphological operations incorporate information simultaneously from all matrix channels rather than treating them independently. Experiments on DT-MRI images with ball- and rod-shaped structuring elements illustrate the properties and performance of our morphological operators for matrix-valued data.

[1]  Marcel J. T. Reinders,et al.  Image sharpening by morphological filtering , 2000, Pattern Recognit..

[2]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[3]  Joachim Weickert,et al.  Morphological Operations on Matrix-Valued Images , 2004, ECCV.

[4]  Guillermo Sapiro,et al.  Vector Median Filters, Inf-Sup Operations, and Coupled PDE's: Theoretical Connections , 2000, Journal of Mathematical Imaging and Vision.

[5]  J. Schnabel,et al.  Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[6]  S. Beucher Use of watersheds in contour detection , 1979 .

[7]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[8]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Joachim Weickert,et al.  Coherence-Enhancing Shock Filters , 2003, DAGM-Symposium.

[10]  Yehoshua Y. Zeevi,et al.  Regularized Shock Filters and Complex Diffusion , 2002, ECCV.

[11]  Rachid Deriche,et al.  Unsupervised Segmentation Incorporating Colour, Texture, and Motion , 2003, CAIP.

[12]  Alfred M. Bruckstein,et al.  Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.

[13]  Klaus Hahn,et al.  Edge Preserving Regularization and Tracking for Diffusion Tensor Imaging , 2001, MICCAI.

[14]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Joachim Weickert,et al.  Mathematical Morphology on Tensor Data Using the Loewner Ordering , 2006, Visualization and Processing of Tensor Fields.

[17]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[18]  Mohamed Cheriet,et al.  Numerical Schemes of Shock Filter Models for Image Enhancement and Restoration , 2003, Journal of Mathematical Imaging and Vision.

[19]  Jean-Michel Morel,et al.  A Note on Two Classical Enhancement Filters and Their Associated PDE's , 2003, International Journal of Computer Vision.

[20]  J. Morel,et al.  Partial differential equations and image iterative filtering , 1997 .

[21]  V. Barnett The Ordering of Multivariate Data , 1976 .

[22]  Werner Nagel Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .

[23]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[24]  Henry P. Kramer,et al.  Iterations of a non-linear transformation for enhancement of digital images , 1975, Pattern Recognit..

[25]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[26]  T. Brox,et al.  Diffusion and regularization of vector- and matrix-valued images , 2002 .

[27]  J. Astola,et al.  Vector median filters , 1990, Proc. IEEE.

[28]  A. R. Rao,et al.  Computing oriented texture fields , 1989, CVPR 1989.

[29]  Edward J. Delp,et al.  Morphological operations for color image processing , 1999, J. Electronic Imaging.

[30]  Juan Ruiz-Alzola,et al.  Homomorphic Filtering of DT-MRI Fields , 2003, MICCAI.

[31]  G. Matheron Random Sets and Integral Geometry , 1976 .

[32]  Stanley Osher,et al.  Shocks and other nonlinear filtering applied to image processing , 1991, Optics & Photonics.

[33]  Lucas J. van Vliet,et al.  A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..

[34]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[35]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[36]  Hugues Talbot,et al.  Complete ordering and multivariate mathematical morphology , 1998 .

[37]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[38]  R. Haralick Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[40]  Rachid Deriche,et al.  Active unsupervised texture segmentation on a diffusion based feature space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[41]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[42]  J. Weickert,et al.  Level-Set Methods for Tensor-Valued Images , 2003 .

[43]  H. Heijmans Morphological image operators , 1994 .

[44]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[45]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[46]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[47]  Thomas Brox,et al.  Nonlinear Matrix Diffusion for Optic Flow Estimation , 2002, DAGM-Symposium.

[48]  Krishnamoorthy Sivakumar,et al.  Morphological Operators for Image Sequences , 1995, Comput. Vis. Image Underst..

[49]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[51]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[52]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[53]  Joachim Weickert,et al.  Median Filtering of Tensor-Valued Images , 2003, DAGM-Symposium.

[54]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[55]  Russell C. Hardie,et al.  Ranking in Rp and its use in multivariate image estimation , 1991, IEEE Trans. Circuits Syst. Video Technol..

[56]  Ioannis Andreadis,et al.  A new approach to morphological color image processing , 2002, Pattern Recognit..

[57]  Simon R. Arridge,et al.  A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images , 2001, IPMI.