A 3D model for carbon monoxide molecular line emission as a potential cosmic microwave background polarization contaminant

We present a model for simulating carbon monoxide (CO) rotational line emission in molecular clouds, taking account of their 3D spatial distribution in galaxies with different geometrical properties. The model implemented is based on recent results in the literature and has been designed for performing Monte Carlo (MC) simulations of this emission. We compare the simulations produced with this model and calibrate them, both on the map and the power spectrum levels, using the second release of data from the Planck satellite for the Galactic plane, where the signal-to-noise ratio is highest. We use the calibrated model to extrapolate the CO power spectrum at low Galactic latitudes where no high sensitivity observations are available yet. We then forecast the level of unresolved polarized emission from CO molecular clouds which could contaminate the power spectrum of cosmic microwave background polarization B modes away from the Galactic plane. Assuming realistic levels of the polarization fraction, we show that the level of contamination is equivalent to a cosmological signal with r ≲ 0.02. The MC MOlecular Line Emission (mcmole3d) python package, which implements this model, is being made publicly available.

[1]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[2]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[3]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[4]  Adam Ginsburg,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH 13CO(1–0) , 2014, 1411.2591.

[5]  Akira Mizuno,et al.  Physical properties of molecular clouds as revealed by NANTEN CO survey: from the galactic center to the galactic warp , 2004 .

[6]  Matias Zaldarriaga,et al.  E/B decomposition of finite pixelized CMB maps , 2003 .

[7]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[8]  T. Dame,et al.  Molecular Clouds in the Milky Way , 2015 .

[9]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[10]  Carlo Baccigalupi Cosmic microwave background polarisation: foreground contrast and component separation , 2003 .

[11]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[12]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[13]  J. Aumont,et al.  Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis , 2016, 1606.07335.

[14]  L. Bronfman,et al.  A CO survey of the southern Milky Way - The mean radial distribution of molecular clouds within the solar circle , 1988 .

[15]  Edinburgh,et al.  Polarized CO Emission from Molecular Clouds , 1999 .

[16]  W. White,et al.  A CMB polarization primer , 1997 .

[17]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[18]  A. M. Johnson,et al.  The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey , 2005 .

[19]  Anthony Challinor,et al.  Analysis of CMB polarization on an incomplete sky , 2001 .

[20]  R. Stompor,et al.  Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach , 2009, 0903.2350.

[21]  J. Vallée CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY , 2014, 1409.4801.

[22]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[23]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[24]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[25]  R. Klessen,et al.  DISTRIBUTION AND MASS OF DIFFUSE AND DENSE CO GAS IN THE MILKY WAY , 2016, 1601.00937.

[26]  G. W. Pratt,et al.  Planck 2013 results. IX. HFI spectral response , 2013, 1303.5070.

[27]  J. Rathborne,et al.  PHYSICAL PROPERTIES AND GALACTIC DISTRIBUTION OF MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY , 2010, 1010.2798.

[28]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[29]  D. Balser,et al.  H ii REGION METALLICITY DISTRIBUTION IN THE MILKY WAY DISK , 2011, 1106.1660.

[30]  Magnetic fields in molecular clouds , 2012 .

[31]  Benjamin L. Davis,et al.  MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION , 2012, 1202.4780.

[32]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[33]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[34]  R. B. Barreiro,et al.  Planck intermediate results - III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal , 2012, 1204.2743.

[35]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[36]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[37]  A. Bajkova,et al.  Estimation of the pitch angle of the Galactic spiral pattern , 2013 .

[38]  V. Pavlidou,et al.  Searching for Inflationary B-modes: Can dust emission properties be extrapolated from 350 GHz to 150 GHz? , 2014, 1410.8136.

[39]  Matias Zaldarriaga,et al.  General solution to the E-B mixing problem , 2007 .