Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration

A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i) effect of dynamic couplings, (ii) modal interaction, (iii) modal identification and experimental methods for flexible structures, and (iv) computational models for large deformation in response to multiaxial excitation.

[1]  A. H. Nayfeh,et al.  Nonlinear motions of beam-mass structure , 1990 .

[2]  C. L. Zaretzky,et al.  Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. II: Combination resonance , 1994 .

[3]  Jeffrey F. Rhoads,et al.  Nonlinear parametric amplification and attenuation in a base-excited cantilever beam , 2011 .

[4]  M.H.A. Bonte,et al.  Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components , 2007 .

[5]  Matthew P. Cartmell,et al.  Simultaneous combination resonances in a parametrically excited cantilever beam , 1987 .

[6]  Cetin Morris Sonsino,et al.  Fatigue assessment of welded joints by local approaches Second edition , 2007 .

[7]  Ne Dowling,et al.  On Multi-axial Random Fatigue Load Modeling , 1998 .

[8]  Michael Osterman,et al.  Virtual Remaining Life Assessment of Electronic Hardware Subjected to Shock and Random Vibration Life Cycle Loads , 2007 .

[9]  J. Lau,et al.  Solder Joint Reliability: Theory And Applications , 2014 .

[10]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .

[11]  W. J. Venstra,et al.  Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator , 2011 .

[12]  Stephen H. Crandall Zero Crossings, Peaks, and Other Statistical Measures of Random Responses , 1962 .

[13]  Turan Dirlik,et al.  Application of computers in fatigue analysis , 1985 .

[14]  Suresh K. Sitaraman,et al.  Analysis and Prediction of Vibration-Induced Solder Joint Failure for a Ceramic Column Grid Array Package , 2008 .

[15]  John E. Sader,et al.  Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 2002 .

[16]  Sondipon Adhikari,et al.  The analysis of piezomagnetoelastic energy harvesters under broadband random excitations , 2011 .

[17]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[18]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[19]  Isaac Elishakoff,et al.  Some closed-form solutions in random vibration of Bernoulli-Euler beams , 1984 .

[20]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Sweitzer RANDOM VIBRATION RESPONSE STATISTICS FOR FATIGUE ANALYSIS OF NONLINEAR STRUCTURES , 2006 .

[22]  A. H. Nayfeh,et al.  Nonlinear Resonances in a Flexible Cantilever Beam , 1994 .

[23]  M. R. Silva,et al.  Non-linear flexural-flexural-torsional-extensional dynamics of beams—II. Response analysis , 1988 .

[24]  Daniel J. Segalman,et al.  AN EFFICIENT METHOD FOR CALCULATING R.M.S. VON MISES STRESS IN A RANDOM VIBRATION ENVIRONMENT , 2000 .

[25]  Wen Zhou,et al.  High Cycle Fatigue Resistance and Reliability Assessment of Flexible Printed Circuitry , 2002 .

[26]  Raouf A. Ibrahim,et al.  Nonlinear dynamic analysis of an elastic beam isolator sliding on frictional supports , 2007 .

[27]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[28]  Pramod Malatkar,et al.  Nonlinear Vibrations of Cantilever Beams and Plates , 2003 .

[29]  Nader Jalili,et al.  Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion , 2007 .

[30]  Tore Dahlberg,et al.  THE EFFECT OF MODAL COUPLING IN RANDOM VIBRATION ANALYSIS , 1999 .

[31]  S. I. Mcneill A method for determining the fatigue critical plane for biaxial random vibration in the frequency domain , 2010 .

[32]  Alper Erturk,et al.  Assumed-modes modeling of piezoelectric energy harvesters: Euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations , 2012 .

[33]  Moustafa Al-Bassyiouni,et al.  Vibration Durability Assessment of Sn3.0Ag0.5Cu and Sn37Pb Solders Under Harmonic Excitation , 2009 .

[34]  David O. Smallwood,et al.  Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs. , 2008 .

[35]  Adam M. Wickenheiser,et al.  Design Optimization of Linear and Non-Linear Cantilevered Energy Harvesters for Broadband Vibrations , 2011 .

[36]  Abhijit Dasgupta,et al.  Physics-of-failure guidelines for accelerated qualification of electronic systems , 1998 .

[37]  Ali H. Nayfeh,et al.  Investigation of subcombination internal resonances in cantilever beams , 1998 .

[38]  N. W. M. Bishop The use of frequency domain parameters to predict structural fatigue , 1988 .

[39]  Earl H. Dowell,et al.  Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment , 2008 .

[40]  R. Herbert Random Vibrations of a Nonlinear Elastic Beam , 1964 .

[41]  N. W. M. Bishop,et al.  A THEORETICAL SOLUTION FOR THE ESTIMATION OF “RAINFLOW” RANGES FROM POWER SPECTRAL DENSITY DATA , 1990 .

[42]  J. Banerjee Explicit analytical expressions for frequency equation and mode shapes of composite beams , 2001 .

[43]  J. Lau,et al.  Solder Joint Reliability of Large Plastic Ball Grid Array Assemblies Under Bending, Twisting,and Vibration Conditions , 1996 .

[44]  V Seena,et al.  Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection , 2011, Nanotechnology.

[45]  Li Cheng,et al.  Development in vibration-based structural damage detection technique , 2007 .

[46]  N. C. Nigam Introduction to Random Vibrations , 1983 .

[47]  N. Jalili,et al.  Coupled vibration and parameter sensitivity analysis of rocking-mass vibrating gyroscopes , 2009 .

[48]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method , 1999 .

[49]  N. Dowling,et al.  Mechanical Behavior of Materials , 2012 .

[50]  Ruijie Wang,et al.  Fatigue life prediction based on natural frequency changes for spot welds under random loading , 2009 .

[51]  Ali H. Nayfeh,et al.  A Parametric Identification Technique for Single-Degree-of-Freedom Weakly Nonlinear Systems with Cubic Nonlinearities , 2003 .

[52]  Earl H. Dowell,et al.  Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades , 1974 .

[53]  Brian P. Mann,et al.  Harmonic balance analysis of the bistable piezoelectric inertial generator , 2012 .

[54]  M. R. Silva Non-linear flexural-flexural-torsional-extensional dynamics of beams—I. Formulation , 1988 .

[55]  Jie Gu,et al.  Prognostics implementation of electronics under vibration loading , 2007, Microelectron. Reliab..

[56]  Julius S. Bendat,et al.  Probability Functions for Random Responses: Prediction of Peaks, Fatigue Damage, and Catastrophic Failures , 1964 .

[57]  Alok Das,et al.  An Assessment of Smart Air and Space Structures: Demonstrations and Technology , 2000 .

[58]  Shahram Sarkani,et al.  Fatigue of welded joints under narrowband non-Gaussian loadings , 1994 .

[59]  C. L. Zaretzky,et al.  Nonlinear flexural-flexural-torsional interactions in beams including the effect of torsional dynamics. I: Primary resonance , 1994, Nonlinear Dynamics.

[60]  Earl H. Dowell,et al.  Damping in beams and plates due to slipping at the support boundaries, part 2: Numerical and experimental study , 1986 .

[61]  Geetha V. Chary,et al.  Improving the Reliability in the Next Generation of US Army Platforms through Physics of Failure Analysis , 2012, Journal of Failure Analysis and Prevention.

[62]  D. S. WHITEHEAD The Analysis of Blade Vibration due to Random Excitation , 2002 .

[63]  Abhijit Dasgupta,et al.  Estimating the Vibration Fatigue Life of Quad Leaded Surface Mount Components , 1993 .

[64]  Daniel J. Inman,et al.  Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects , 2012 .

[65]  Ed Habtour,et al.  Life estimation model of a cantilevered beam subjected to complex random vibration , 2012 .

[66]  Jung Ho Park,et al.  In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. , 2004, Lab on a chip.

[67]  A. Nayfeh,et al.  On the Transfer of Energy between Widely Spaced Modes in Structures , 2003 .

[68]  Ali H. Nayfeh,et al.  Nonlinear response of cantilever beams to combination and subcombination resonances , 1998 .

[69]  Ewald Macha,et al.  Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading , 2005 .

[70]  Kai Wolf,et al.  NONLINEAR DYNAMICS OF A CANTILEVER BEAM ACTUATED BY PIEZOELECTRIC LAYERS IN SYMMETRIC AND ASYMMETRIC CONFIGURATION , 2001 .

[71]  John Dugundji,et al.  Lateral Bending-Torsion Vibrations of a Thin Beam Under Parametric Excitation , 1973 .

[72]  Wayne E. Whiteman,et al.  Fatigue Failure Results for Multi-Axial versus Uniaxial Stress Screen Vibration Testing , 2002 .

[73]  S. Mahadevan,et al.  A unified multiaxial fatigue damage model for isotropic and anisotropic materials , 2007 .

[74]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. II. Forced Motions , 1978 .

[75]  Emmanuel Pagnacco,et al.  A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects , 2010 .

[76]  Andrew Plummer,et al.  Laboratory Road Simulation for Full Vehicle Testing: A Review , 2001 .

[77]  R. A. Scott,et al.  Non-planar, non-linear oscillations of a beam II. Free motions , 1976 .

[78]  Isaac Elishakoff Generalized eringen problem: influence of axial force on random vibration response of simply supported beam , 1987 .

[79]  E. Habtour,et al.  Modeling Approach for Predicting the Rate of Frequency Change of Notched Beam Exposed to Gaussian Random Excitation , 2014 .

[80]  Yunkai Lu,et al.  Random Vibration Analysis of Higher-Order Nonlinear Beams and Composite Plates with Applications of ARMA Models , 2008 .

[81]  Claudio Braccesi,et al.  An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions , 2008 .

[82]  C. Q. Liu Combination of an improved FRF-based substructure synthesis and power flow method with application to vehicle axle noise analysis , 2008 .

[83]  André Preumont,et al.  TOOLS FOR A MULTIAXIAL FATIGUE ANALYSIS OF STRUCTURES SUBMITTED TO RANDOM VIBRATIONS , 1999 .

[84]  Abhijit Dasgupta,et al.  Fatigue of Chip Scale Package Interconnects Due to Cyclic Bending , 2001 .

[85]  Murat Aykan,et al.  Vibration fatigue analysis and multi-axial effect in testing of aerospace structures , 2009 .

[86]  H. Guechichi,et al.  A high fatigue life prediction methodology under constant amplitude multiaxial proportional loadings , 2011 .

[87]  Abhijit Dasgupta,et al.  Improved reliability testing with multiaxial electrodynamics vibration , 2010, 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS).

[88]  F. Roosevelt,et al.  Tools for a Multiaxial Fatigue Analysis of Structures Submitted to Random Vibrations , 2022 .

[89]  Qing Gao,et al.  Constitutive Modeling on Time-Dependent Deformation Behavior of 96.5Sn–3.5Ag Solder Alloy Under Cyclic Multiaxial Straining , 2007 .

[90]  Wayne E. Whiteman,et al.  Inadequacies in Uniaxial Stress Screen Vibration Testing , 2001 .

[91]  Ulrich Füllekrug Utilization of multi–axial shaking tables for the modal identification of structures , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[92]  Ron S. Li A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load , 2001 .

[93]  Shyamsunder Erramilli,et al.  Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. , 2006, Physical review letters.

[94]  Ali H. Nayfeh,et al.  Non-linear non-planar oscillations of a cantilever beam under lateral base excitations , 1990 .

[95]  J. Lau,et al.  Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies , 1996 .

[96]  Isaac Elishakoff,et al.  Random vibration of a nonlinearly deformed beam by a new stochastic linearization technique , 1995 .

[97]  Ali H. Nayfeh,et al.  Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .

[98]  Michael Osterman,et al.  Novel Approach to Improve Electronics Reliability in the Next Generation of US Army Small Unmanned Ground Vehicles Under Complex Vibration Conditions , 2012, Journal of Failure Analysis and Prevention.

[99]  Michael G. Pecht,et al.  The "trouble not identified" phenomenon in automotive electronics , 2002, Microelectron. Reliab..

[100]  M. Roukes,et al.  Nonlinearity in nanomechanical cantilevers , 2013, 1301.1750.

[101]  A. Dasgupta,et al.  Harmonic and Random Vibration Durability of SAC305 and Sn37Pb Solder Alloys , 2010, IEEE Transactions on Components and Packaging Technologies.

[102]  Giuliano Allegri,et al.  On the inverse power laws for accelerated random fatigue testing , 2008 .

[103]  C.W.S. To,et al.  Vibration of a cantilever beam with a base excitation and tip mass , 1982 .

[104]  Ali H. Nayfeh,et al.  Non-linear non-planar parametric responses of an inextensional beam☆ , 1989 .

[105]  R. M. French,et al.  A comparison of simultaneous and sequential single-axis durability testing , 2006 .

[106]  Thomas L. Paez,et al.  Random Vibrations: Theory and Practice , 1995 .

[107]  John W. Miles,et al.  On Structural Fatigue Under Random Loading , 1954 .

[108]  Chandrakant Awate,et al.  Validation of an Accelerated Test on a 4-Post Road Simulator , 2007 .

[109]  Y. K. Lin,et al.  PROBABILITY DISTRIBUTIONS OF STRESS PEAKS IN LINEAR AND NONLINEAR STRUCTURES , 1963 .

[110]  Steven W. Shaw,et al.  Mechanical Domain Parametric Amplification , 2008 .

[111]  Nader Jalili,et al.  Exact Frequency Analysis of a Rotating Cantilever Beam With Tip Mass Subjected to Torsional-Bending Vibrations , 2011 .

[112]  Claudio Braccesi,et al.  The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress , 2009 .

[113]  N. Dowling Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue , 1993 .

[114]  José Roberto de França Arruda,et al.  Simple models for the dynamic modeling of rotating tires , 2008 .

[115]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[116]  G. Reese,et al.  Estimating the probability distribution of von Mises stress for structures undergoing random excitation. Part 1: Derivation , 1998 .

[117]  Ewald Macha,et al.  A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime , 1999 .

[118]  Zhao Lei,et al.  A dynamic stochastic finite element method based on dynamic constraint mode , 1998 .

[119]  Dewey H. Hodges,et al.  Introduction to Structural Dynamics and Aeroelasticity: INTRODUCTION TO STRUCTURAL DYNAMICS AND AEROELASTICITY, SECOND EDITION , 2011 .

[120]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method , 1999 .

[121]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[122]  Janko Slavič,et al.  Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping , 2012 .

[123]  André Preumont,et al.  Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations , 2001 .

[124]  Richard A. Scott,et al.  Non-planar, non-linear oscillations of a beam—I. Forced motions , 1975 .

[125]  Saeid Bashash,et al.  Modeling and experimental vibration analysis of nanomechanical cantilever active probes , 2008 .

[126]  Daniel J. Inman,et al.  Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analyses, and experimental validations , 2011 .

[127]  A. H. Nayfeh,et al.  Observations of modal interactions in resonantly forced beam-mass structures , 1991 .

[128]  Carlo Rainieri,et al.  Near real-time tracking of dynamic properties for standalone structural health monitoring systems , 2011 .

[129]  P. Tibbits,et al.  Application of Algorithms for Percentiles of von Mises Stress From Combined Random Vibration and Static Loadings , 2011 .

[130]  Dewey H. Hodges,et al.  Introduction to Structural Dynamics and Aeroelasticity , 2002 .

[131]  S. Mahadevan,et al.  Multiaxial high-cycle fatigue criterion and life prediction for metals , 2005 .

[132]  S. Rice Mathematical analysis of random noise , 1944 .

[133]  S. Suresh Fatigue of materials , 1991 .

[134]  M.H.A. Bonte,et al.  Prediction of mechanical fatigue caused by multiple random excitations , 2004 .

[135]  Earl H. Dowell Damping in beams and plates due to slipping at the support boundaries , 1986 .

[136]  Xia Liu,et al.  Experimental study and life prediction on high cycle vibration fatigue in BGA packages , 2006, Microelectron. Reliab..