Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts.

Black phosphorus (BP) has been recently unveiled as a promising 2D direct bandgap semiconducting material. Here, ambipolar field-effect transistor behavior of nanolayers of BP with ferromagnetic tunnel contacts is reported. Using TiO2/Co contacts, a reduced Schottky barrier <50 meV, which can be tuned further by the gate voltage, is obtained. Eminently, a good transistor performance is achieved in the devices discussed here, with drain current modulation of four to six orders of magnitude and a mobility of μh ≈ 155 cm(2) V(-1) s(-1) for hole conduction at room temperature. Magnetoresistance calculations using a spin diffusion model reveal that the source-drain contact resistances in the BP device can be tuned by gate voltage to an optimal range for injection and detection of spin-polarized holes. The results of the study demonstrate the prospect of BP nanolayers for efficient nanoelectronic and spintronic devices.

[1]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[2]  M. Goldman,et al.  Principles of dynamic nuclear polarisation , 1978 .

[3]  R. T. Tung,et al.  Chemical bonding and fermi level pinning at metal-semiconductor interfaces. , 2000, Physical review letters.

[4]  G. Schmidt,et al.  Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor , 1999, cond-mat/9911014.

[5]  Albert Fert,et al.  Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor , 2001 .

[6]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[7]  Cock Lodder,et al.  Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets , 2006, Nature materials.

[8]  B. Wees,et al.  Electronic spin transport and spin precession in single graphene layers at room temperature , 2007, Nature.

[9]  R. Warburton,et al.  Single spins in self-assembled quantum dots , 2008, 2008 34th European Conference on Optical Communication.

[10]  R. Jansen,et al.  Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers , 2009 .

[11]  Saroj P. Dash,et al.  Electrical creation of spin polarization in silicon at room temperature , 2009, Nature.

[12]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[13]  B. Min,et al.  Electrical spin injection into moderately doped silicon enabled by tailored interfaces , 2010 .

[14]  B. Min,et al.  Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field. , 2010, Nature materials.

[15]  S. Bégin-Colin,et al.  Nanotrench for nano and microparticle electrical interconnects , 2010, Nanotechnology.

[16]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[17]  Cyrile Deranlot,et al.  Highly efficient spin transport in epitaxial graphene on SiC , 2012 .

[18]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[19]  S. Yuasa,et al.  Anomalous scaling of spin accumulation in ferromagnetic tunnel devices with silicon and germanium , 2012, 1211.4460.

[20]  Yang Song,et al.  Nanospintronics Based on Magnetologic Gates , 2012, IEEE Transactions on Electron Devices.

[21]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[22]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[23]  H. Wen,et al.  Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. , 2013, Nano letters.

[24]  André Dankert,et al.  Thermal creation of electron spin polarization in n-type silicon , 2013, 1403.3528.

[25]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[26]  E. Saitoh,et al.  Subject Areas : Semiconductor Physics , Spintronics A Viewpoint on : Spin-Pump-Induced Spin Transport in p-Type Si at Room Temperature , 2013 .

[27]  André Dankert,et al.  Efficient Spin Injection into Silicon and the Role of the Schottky Barrier , 2013, Scientific Reports.

[28]  M. Kamalakar,et al.  High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. , 2014, ACS nano.

[29]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[30]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[31]  Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions , 2014, 1410.1865.

[32]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[33]  M. Kamalakar,et al.  Spin transport and precession in graphene measured by nonlocal and three-terminal methods , 2014, 1405.0836.

[34]  B. Wees,et al.  Absence of hyperfine effects in 13C-graphene spin-valve devices , 2014, 1404.6584.

[35]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[36]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[37]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[38]  M. Kamalakar,et al.  Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride , 2014, Scientific Reports.

[39]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[40]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[41]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[42]  M. Kamalakar,et al.  Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures , 2014 .