Model‐based estimation of sampling‐caused uncertainty in aerosol remote sensing for climate research applications

To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiation‐transport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125°× 1.125° and 2°× 3°: the analysis is restricted to 60°S–60°N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long‐term mean absolute monthly difference between all and dark target (DT) pixels was 0.01–0.02 over the ocean and 0.03–0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07–0.12 (30–45% of the global long‐term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01–0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun‐glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel‐wide along‐track instruments such as the Aerosol Polarimetry Sensor and the Cloud–Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along‐track sensor to be 0.0005–0.0015 (ocean) and 0.0029–0.01 (land) or 0.5–1.2% and 1.1–4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant change in the global mean AOT, suggesting that sampling density is unlikely to limit the use of such instruments for climate applications at least on a global, monthly scale.

[1]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[2]  T. Nakajima,et al.  Validation and empirical correction of MODIS AOT and AE over ocean , 2013 .

[3]  M. Mishchenko,et al.  Statistical analysis of single-track instrument sampling in spaceborne aerosol remote sensing for climate research , 2013 .

[4]  Jeffrey S. Reid,et al.  Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa , 2012 .

[5]  William Martin,et al.  Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs. , 2012, Optics express.

[6]  Johannes Quaas,et al.  Estimates of aerosol radiative forcing from the MACC re-analysis , 2012 .

[7]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[8]  Jean-Noël Thépaut,et al.  The MACC reanalysis: an 8 yr data set of atmospheric composition , 2012 .

[9]  Bryan A. Franz,et al.  Corrections to the Calibration of MODIS Aqua Ocean Color Bands Derived From SeaWiFS Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[11]  J. Penner,et al.  Satellite methods underestimate indirect climate forcing by aerosols , 2011, Proceedings of the National Academy of Sciences.

[12]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[13]  U. Lohmann,et al.  Impact of parametric uncertainties on the present-day climate and on the anthropogenic aerosol effect , 2010 .

[14]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[15]  Norman G. Loeb,et al.  Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis , 2010 .

[16]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[17]  Brent N. Holben,et al.  An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation , 2010 .

[18]  Brian Cairns,et al.  Toward unified satellite climatology of aerosol properties.: 3. MODIS versus MISR versus AERONET , 2010 .

[19]  Lorraine Remer,et al.  MISR Aerosol Product Attributes and Statistical Comparisons With MODIS , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Candace Berrett,et al.  Spatial characteristics of the difference between MISR and MODIS aerosol optical depth retrievals over mainland Southeast Asia , 2009 .

[21]  David J. Diner,et al.  Retrieval of aerosol properties over land using MISR observations , 2009 .

[22]  Robert C. Levy,et al.  The dark-land MODIS collection 5 aerosol retrieval: Algorithm development and product evaluation , 2009 .

[23]  Brian Cairns,et al.  Polarimetric remote sensing of aerosols over land surfaces , 2009 .

[24]  Brian Cairns,et al.  Toward unified satellite climatology of aerosol properties : What do fully compatible MODIS and MISR aerosol pixels tell us? , 2008 .

[25]  Michael I. Mishchenko,et al.  Toward unified satellite climatology of aerosol properties: Direct comparisons of advanced level 2 aerosol products , 2008 .

[26]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[27]  Sundar A. Christopher,et al.  Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model , 2008 .

[28]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[29]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .

[30]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[31]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[32]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[33]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[34]  Lorraine Remer,et al.  Comparison of Three Years of Terra and Aqua MODIS Aerosol Optical Thickness Over the Global Oceans , 2006, IEEE Geoscience and Remote Sensing Letters.

[35]  Otto P. Hasekamp,et al.  Retrieval of aerosol properties over the ocean from multispectral single‐viewing‐angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study , 2005 .

[36]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[37]  Petr Chylek,et al.  Aerosol optical depth retrieval over the NASA Stennis Space Center: MTI, MODIS, and AERONET , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[38]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[39]  Lorraine A. Remer,et al.  Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua , 2005 .

[40]  Jens Redemann,et al.  Retrieval of Aerosol Scattering and Absorption Properties from Photopolarimetric Observations over the Ocean during the CLAMS Experiment , 2005 .

[41]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[42]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[43]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[44]  A. Lacis,et al.  Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements , 2004 .

[45]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[47]  Brian Cairns,et al.  Atmospheric aerosol and trace gas parameter derived from local MFRSR network: multi-instrument data fusion in comparison with satellite retrievals , 2003, SPIE Remote Sensing.

[48]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[49]  Yoram J. Kaufman,et al.  Will aerosol measurements from Terra and Aqua Polar Orbiting satellites represent the daily aerosol abundance and properties? , 2000 .

[50]  D. Diner,et al.  Multiangle Imaging SptectrRadiometer (MISR) description and experiment overview , 1999 .

[51]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[52]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[53]  B. Cairns,et al.  Low-cost long-term monitoring of global climate forcings and feedbacks , 1995 .

[54]  William B. Rossow,et al.  Long-Term Monitoring of Global Climate Forcings and Feedbacks , 1993 .

[55]  J. Ambrus,et al.  Critical evaluation. , 1965, The Wistar Institute symposium monograph.