Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses.

[1]  J. Boothroyd,et al.  A Helical Membrane‐Binding Domain Targets the Toxoplasma ROP2 Family to the Parasitophorous Vacuole , 2009, Traffic.

[2]  L. Sibley,et al.  Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii , 2009, The EMBO journal.

[3]  J. Ajioka,et al.  Selection at a Single Locus Leads to Widespread Expansion of Toxoplasma gondii Lineages That Are Virulent in Mice , 2009, PLoS genetics.

[4]  Susan S. Taylor,et al.  Pseudokinases: functional insights gleaned from structure. , 2009, Structure.

[5]  Koby Crammer,et al.  Reranking candidate gene models with cross-species comparison for improved gene prediction , 2008, BMC Bioinformatics.

[6]  E. Phelps,et al.  Toxoplasma gondii Rhoptry Discharge Correlates with Activation of the Early Growth Response 2 Host Cell Transcription Factor , 2008, Infection and Immunity.

[7]  D. Roos,et al.  Organellar dynamics during the cell cycle of Toxoplasma gondii , 2008, Journal of Cell Science.

[8]  A. Sinai,et al.  Infection with Toxoplasma gondii results in dysregulation of the host cell cycle , 2008, Cellular microbiology.

[9]  Haiming Wang,et al.  ToxoDB: an integrated Toxoplasma gondii database resource , 2007, Nucleic Acids Res..

[10]  J. Boothroyd,et al.  Kiss and spit: the dual roles of Toxoplasma rhoptries , 2008, Nature Reviews Microbiology.

[11]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[12]  Susan S. Taylor,et al.  Rethinking Pseudokinases , 2008, Cell.

[13]  L. Sibley,et al.  Rhoptries: an arsenal of secreted virulence factors. , 2007, Current opinion in microbiology.

[14]  G. Labesse,et al.  ROP18 Is a Rhoptry Kinase Controlling the Intracellular Proliferation of Toxoplasma gondii , 2007, PLoS pathogens.

[15]  A. Sinai The Toxoplasma Kinase ROP18: An Active Member of a Degenerate Family , 2007, PLoS pathogens.

[16]  J. Boothroyd,et al.  Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue , 2007, Nature.

[17]  M. Nunes,et al.  A novel protein kinase family in Plasmodium falciparum is differentially transcribed and secreted to various cellular compartments of the host cell , 2007, Molecular microbiology.

[18]  H. Vial,et al.  Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane , 2007, Cellular microbiology.

[19]  Michael S. Behnke,et al.  A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii , 2006, Science.

[20]  J. Ajioka,et al.  Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis , 2006, Science.

[21]  P. Ronald,et al.  The Rice Kinase Database. A Phylogenomic Database for the Rice Kinome1[OA] , 2006, Plant Physiology.

[22]  G. Labesse,et al.  The ROP2 family of Toxoplasma gondii rhoptry proteins: Proteomic and genomic characterization and molecular modeling , 2006, Proteomics.

[23]  G. Barton,et al.  Emerging roles of pseudokinases. , 2006, Trends in cell biology.

[24]  I. Coppens,et al.  Toxoplasma gondii Sequesters Lysosomes from Mammalian Hosts in the Vacuolar Space , 2006, Cell.

[25]  Karen E. Pilcher,et al.  The Dictyostelium Kinome—Analysis of the Protein Kinases from a Simple Model Organism , 2006, PLoS genetics.

[26]  I. Coppens,et al.  The host cell transcription factor hypoxia‐inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels , 2006, Cellular microbiology.

[27]  Peter J Bradley,et al.  Proteomic Analysis of Rhoptry Organelles Reveals Many Novel Constituents for Host-Parasite Interactions in Toxoplasma gondii* , 2005, Journal of Biological Chemistry.

[28]  J. Boothroyd,et al.  Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. , 2005, Trends in parasitology.

[29]  M. Parsons,et al.  Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi , 2005, BMC Genomics.

[30]  David S. Roos,et al.  Themes and Variations in Apicomplexan Parasite Biology , 2005, Science.

[31]  Olivier Gascuel,et al.  PHYML Online: A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference , 2018 .

[32]  N Srinivasan,et al.  A genomic perspective of protein kinases in Plasmodium falciparum , 2004, Proteins.

[33]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[34]  Kami Kim,et al.  The Toxoplasma gondii Rhoptry Protein ROP4 Is Secreted into the Parasitophorous Vacuole and Becomes Phosphorylated in Infected Cells , 2004, Eukaryotic Cell.

[35]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[36]  D. Roos,et al.  Dynamics of Toxoplasma gondii Differentiation , 2004, Eukaryotic Cell.

[37]  Wen-Hsiung Li,et al.  Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. , 2004, Molecular biology and evolution.

[38]  B. Butcher,et al.  Toxoplasma gondii Interferes with Lipopolysaccharide-Induced Mitogen-Activated Protein Kinase Activation by Mechanisms Distinct from Endotoxin Tolerance1 , 2004, The Journal of Immunology.

[39]  J. K. Frenkel,et al.  Determination of the genera of cyst-forming coccidia , 2003, Parasitology Research.

[40]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[41]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[42]  G. McFadden,et al.  The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. , 2003, International review of cytology.

[43]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[44]  T. Hunter,et al.  Evolution of protein kinase signaling from yeast to man. , 2002, Trends in biochemical sciences.

[45]  D. Hill,et al.  Toxoplasma gondii: transmission, diagnosis and prevention. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[46]  I. D. Manger,et al.  Microarray Analysis Reveals Previously Unknown Changes in Toxoplasma gondii-infected Human Cells* , 2001, The Journal of Biological Chemistry.

[47]  U. Groß,et al.  Stage differentiation of the protozoan parasite Toxoplasma gondii. , 1999, Immunobiology.

[48]  T. Hunter,et al.  The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Roos,et al.  Toxoplasma Gondii Bradyzoites Form Spontaneously during Sporozoite-Initiated Development , 1998, Infection and Immunity.

[50]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[51]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[52]  T. Hunter,et al.  The protein kinases of budding yeast: six score and more. , 1997, Trends in biochemical sciences.

[53]  L. Sibley,et al.  Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. , 1997, European journal of cell biology.

[54]  D. Roos,et al.  Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. , 1994, Methods in cell biology.

[55]  S. Ohno,et al.  Evolution from fish to mammals by gene duplication. , 2009, Hereditas.