Erdös–Ko–Rado Theorem—22 Years Later

In 1961 Erdos, Ko, and Rado proved that, if a family $\mathcal{F}$ of k-subsets of an n-set is such that any 2 sets have at least l elements in common, then for n large enough $| \mathcal{F} | \leqq \begin{pmatrix} {n - l} \\ {k - l} \end{pmatrix}$. This result had great impact on combinatorics. Here we give a survey of known and of some new generalizations and analogues of this theorem. We consider mostly problems which were not included or were touched very briefly in the survey papers [17], [46], [51], [61].

[1]  Gyula O. H. Katona,et al.  Extremal hypergraph problems and convex hulls , 1985, Comb..

[2]  Bruce Rothschild,et al.  A Generalization of the Erdös-Ko-Rado Theorem on Finite Set Systems , 1973, J. Comb. Theory, Ser. A.

[3]  B. Lindström,et al.  A Generalization of a Combinatorial Theorem of Macaulay , 1969 .

[4]  D. E. Daykin,et al.  SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .

[5]  D. Kleitman On a combinatorial conjecture of Erdös , 1966 .

[6]  Daniel J. Kleitman,et al.  Extensions of the Erd¨os-Ko-Rado theorem , 1976 .

[7]  W. N. Hsieh,et al.  Intersection theorems for systems of finite vector spaces , 1975, Discret. Math..

[8]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[9]  Aeryung Moon An Analogue of the Erdös-Ko-Rado Theorem for the Hamming Schemes H(n, q) , 1982, J. Comb. Theory, Ser. A.

[10]  D. Kleitman,et al.  Proof techniques in the theory of finite sets , 1978 .

[11]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[12]  Zoltán Füredi,et al.  The Erdös-Ko-Rado Theorem for Integer Sequences , 1980, SIAM J. Matrix Anal. Appl..

[13]  Masao Kiyota,et al.  An Inequality for Finite Permutation Groups , 1979, J. Comb. Theory, Ser. A.

[14]  Peter Frankl On families of finite sets no two of which intersect in a singleton , 1977, Bulletin of the Australian Mathematical Society.

[15]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[16]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .

[17]  Vašek Chvátal,et al.  Intersecting families of edges in hypergraphs having the hereditary property , 1974 .

[18]  Peter Frankl Families of finite sets with prescribed cardinalities for pairwise intersections , 1980 .

[19]  Hans-Dietrich O. F. Gronau On Sperner families in which no 3 sets have an empty intersection , 1979, Acta Cybern..

[20]  Peter Frankl Generalizations of theorems of Katona and Milner , 1976 .

[21]  Peter Frankl Extremal Problems and Coverings of the Space , 1980, Eur. J. Comb..

[22]  Gyula O. H. Katona A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .

[23]  Douglas B. West,et al.  Extremal Problems in Partially Ordered Sets , 1982 .

[24]  Michel Deza,et al.  Some Properties of Perfect Matroid Designs , 1980 .

[25]  J. C. Meyer Quelques problemes concernant les cliques des hypergraphes h-complets et q-parti h-complets , 1974 .

[26]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[27]  Peter Frankl,et al.  On Sperner Families Satisfying an Additional Condition , 1976, J. Comb. Theory, Ser. A.

[28]  Peter Frankl,et al.  On Set Intersections , 1980, J. Comb. Theory, Ser. A.

[29]  Hans-Dietrich O. F. Gronau On Sperner Families in Which No k Sets Have an Empty Intersection, II , 1981, J. Comb. Theory, Ser. A.

[30]  M. Deza,et al.  Solution d'un problème de Erdös-Lovász , 1974 .

[31]  Peter Frankl,et al.  On intersecting families of finite sets , 1978, Bulletin of the Australian Mathematical Society.

[32]  P. Os,et al.  Problems and Results in Combinatorial Analysis , 1978 .

[33]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[34]  A. Schrijver Association schemes and the Shannon capacity: Eberlein-polynomials and the Erdos-Ko-Rado Theorem , 1981 .

[35]  Peter Frankl,et al.  A Finite Set Intersection Theorem , 1981, Eur. J. Comb..

[36]  P. Erdos A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .

[37]  Peter Frankl Families of finite sets satisfying a union condition , 1979, Discret. Math..

[38]  Paul Erdös,et al.  Extremal problems among subsets of a set , 1974, Discret. Math..

[39]  Peter Frankl A General Intersection Theorem For Finite Sets , 1980 .

[40]  A. Hilton ANALOGUES OF A THEOREM OF ERDÖS, KO, AND RADO ON A FAMILY OF FINITE SETS , 1974 .