Quasi-periodic incompressible Euler flows in 3D

We prove the existence of time-quasi-periodic solutions of the incompressible Euler equation on the three-dimensional torus $\T^3$, with a small time-quasi-periodic external force. The solutions are perturbations of constant (Diophantine) vector fields, and they are constructed by means of normal forms and KAM techniques for reversible quasilinear PDEs.

[1]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[2]  A. Shnirelman,et al.  Weak Solutions with Decreasing Energy¶of Incompressible Euler Equations , 2000 .

[3]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[4]  M. Berti,et al.  An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds , 2013, 1311.6943.

[5]  D. Robert,et al.  Reducibility of the Quantum Harmonic Oscillator in $d$-dimensions with Polynomial Time Dependent Perturbation , 2017, 1702.05274.

[6]  Pietro Baldi,et al.  Gravity Capillary Standing Water Waves , 2014, 1405.1934.

[7]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[8]  M. Procesi,et al.  Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations , 2014, 1412.5786.

[9]  S. Kuksin,et al.  On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .

[10]  P. Baldi,et al.  KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation , 2014 .

[11]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[12]  P. Baldi,et al.  Time quasi-periodic gravity water waves in finite depth , 2017, Inventiones mathematicae.

[13]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2016, Communications in Mathematical Physics.

[14]  Peter J. Olver,et al.  A nonlinear Hamiltonian structure for the Euler equations , 1982 .

[15]  M. Berti,et al.  Quasi-periodic solutions with Sobolev regularity of NLS on T^d with a multiplicative potential , 2010, 1012.1427.

[16]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[17]  Riccardo Montalto,et al.  Almost-Periodic Response Solutions for a Forced Quasi-Linear Airy Equation , 2020, Journal of Dynamics and Differential Equations.

[18]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[19]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[20]  Vlad Vicol,et al.  Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.

[21]  P. Baldi Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type , 2012, 1202.3342.

[22]  Nicolas Crouseilles,et al.  Quasi-periodic solutions of the 2D Euler equation , 2013, Asymptot. Anal..

[23]  M. Berti KAM for PDEs , 2016 .

[24]  Pavel I. Plotnikov,et al.  Standing Waves on an Infinitely Deep Perfect Fluid Under Gravity , 2005 .

[25]  M. Berti,et al.  Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb {T}^d$ with a multiplicative potential , 2013 .

[26]  Philip Isett On the Endpoint Regularity in Onsager's Conjecture , 2017, 1706.01549.

[27]  Peter Constantin,et al.  On the Euler equations of incompressible fluids , 2007 .

[28]  Sergej B. Kuksin,et al.  A KAM-theorem for equations of the Korteweg--de Vries type , 1998 .

[29]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[30]  Riccardo Montalto,et al.  Reducibility of Non-Resonant Transport Equation on $${\mathbb {T}}^d$$Td with Unbounded Perturbations , 2018, Annales Henri Poincaré.

[31]  Riccardo Montalto,et al.  Reducibility of first order linear operators on tori via Moser's theorem , 2018, Journal of Functional Analysis.

[32]  M. Berti,et al.  Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential , 2012, 1202.2424.

[33]  Tarek M. Elgindi,et al.  Finite-time singularity formation for $C^{1,\alpha }$ solutions to the incompressible Euler equations on $\mathbb {R}^3$ , 2019, Annals of Mathematics.

[34]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[35]  B. Khesin,et al.  KAM theory and the 3D Euler equation , 2014, 1401.5516.

[36]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2017, Communications in Mathematical Physics.

[37]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[38]  P. Baldi,et al.  Controllability of quasi-linear Hamiltonian NLS equations , 2016, 1610.09196.

[39]  Xiaoping Yuan,et al.  A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations , 2011 .

[40]  C. Procesi,et al.  Reducible quasi-periodic solutions for the non linear Schrödinger equation , 2015, 1504.00564.

[41]  Riccardo Montalto A P ] 9 A ug 2 01 7 A reducibility result for a class of linear wave equations on T d , 2018 .

[42]  Riccardo Montalto,et al.  Quasi-periodic solutions for the forced Kirchhoff equation on Td , 2018, 1802.04139.

[43]  Riccardo Montalto,et al.  Reducibility of non-resonant transport equation on $T^d$ with unbounded perturbations. , 2018 .

[44]  D. Robert,et al.  Growth of Sobolev norms for abstract linear Schrödinger equations , 2017, Journal of the European Mathematical Society.

[45]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[46]  R. Feola,et al.  Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential , 2019, 1910.10657.

[47]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[48]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .