Geographical embedding of scale-free networks

[1]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[2]  L. Sander,et al.  Geography in a scale-free network model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Reuven Cohen,et al.  Scale-free networks on lattices. , 2002, Physical review letters.

[4]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[5]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  S. N. Dorogovtsev,et al.  Size-dependent degree distribution of a scale-free growing network. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[10]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[11]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[12]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[13]  A. Barbour,et al.  Small worlds , 2000, Random Struct. Algorithms.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[16]  L. Schulman,et al.  Luminescence Quenching of Ruthenium(II)-Tris(phenanthroline) by Cobalt(III)-Tris(phenanthroline) Bound to the Surface of Starburst Dendrimers , 1998 .

[17]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[18]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[19]  Béla Bollobás,et al.  Random Graphs , 1985 .

[20]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[21]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[22]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[23]  Magyar Tudományos Akadémia. Nyelvtudományi Intézet,et al.  A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei = Труды Математического института Академии наук Венгрии = Publications of the Mathematical Institute of the Hungarian Academy of Sciences , 1956 .